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Paper Introduction

Economics is defined as the study of how people behave with |
regard to the production and consumption of goods and statistics is the
subject that helps in collection, analysis and interpretation of data. It helps
in simpler data presentation in an effective manner so as to conclude the
result even to a person that have no knowledge about that topic. Thus,
statistics helps in giving an easy to understand quantitative expression to
economic problems, for eg., if one says that there are many unemployed
people in India, it does not give you any idea, whereas if one says that
about 25% people of India are unemployed, you get a better idea.

Statistical methods are used to prepare national income accounts,
index numbers, to forecast about future economic consequences of policies
undertaken today, etc. Therefore a sound knowledge of statistical tools
and techniques and their application in economics is very essential for the
learners. This paper contains 4 units.

The first unit deals with the concept of probability. After reading
the unit you will be able to get an overall idea about what actually
probability is, the various related concepts like basic probability rules,
conditional probability, Random variable, Mathematical expectations etc.
You will also learn about moments relating to discrete and continuous
random variables.

The second unit can be actually said as an extension of the first
unit. This unit is about 3 different probability distributions functions viz.,
binomial distribution, poisson distribution and normal distribution. After
going through this unit you will be able to differentiate between discrete
and continuous probability distribution fimction. You will also learn about
their application. The unit also tries to give a basic idea about Moment
generating function and the central limit theory.

In the third unit, you will leamn about various concepts regarding
Income distribution. The unit tries to introduce to you the concepts of
Pareto’ law of Income distribution, log-normal distribution, different
measures of income distribution etc. It gives a special emphasize on Gini
coefficient and Lorenz curve. '

The last unit is about index numbers. Afler going through this unit
you will get an idea about the index numbers of Laspayre, Paasche,
Fisher etc. and the inter-relation between them. You will also know about
different tests used to judge the adequacy of index numbers viz., the time
reversal, factor reversal and circular test etc. You will be able to know
about base shifting, splicing and deflating index numbers. Finally, the unit
also introduces the concept of indices of industrial production, You will

get to know what these indices are.
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1.1 Introduction :

Probability is the measure of likelihood of occurances of chance!
events. Events whose occurances entirely depend upon factors beyond '»
human control are called chance events. Thus, probability gives a
quantitative measure of the chance of a random experiment.

The theory of probability has its origin in the games of chance
related to gambling. A systematic and scientific foundation of the
mathematical theory of probability was laid in mid-seventeenth century by
the French mathematicians Blaise Pascal (1623-62) and Pierre de
Fermat (1601-65). Thomas Bayes (1702-61) introduced the concept of
inverse probability. Russian mathematicians have made great |
contributions to the theory of probability. The modern theory of |
probability was developed by Russian mathematicians like Chebychev ||
(1821-94), A Markov (1856-1922) and A.N. Kolmogorov.

There are three approaches to probability. They are : fl
(1) Classical Approach

(i1) Emperical Approach

(iiii) Axiomatic Approach

1.2 Objectives :

This unit is designed to help you understand the concept of ‘
probability and its related ideas. After reading this unit you will be able |
fo.

(a) Explain different concepts related to probability. :
(b) Analyse the pattern of distribution on the basis of moments. {

(c) Draw conclusion of any event on the basis of mathematical [5
expectation.

(d) Formulate any probabilistic decision in life.

1.3 Definition to the Theory of Probability:

The axiomatic approach to probability, which closely relates the
theory of probability with the modem metric theory of functions and also
set theory, was propounded by a Russian mathematician AN. |
Kolmogorov in 1933. The axiomatic of probability includes both the
classical and statistical definitions as particular cases and overcomes the:
deficiencies of each of them. On the basis of 3 fundamental axioms and
relying entirely on the basis of deduction Kolmogorov was able to bring
together the diverse strands of probability into a unified axiomised |
system. The axioms provide a set of rules which define relationship
between abstract entities More precisely, under axiomatic approach, the
probability can be deduced from mathematical concepts.

Prior to 1933, there were three main approaches to the theory of |

: ‘ ' : ‘.
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probability. Historically, the oldest and simplest way of measuring
probabilities is the classical approach. It applies when all possible

mcce! outcomes of an experiment are equally likely and mutually exclusive.

N § Thus, if an experiment results in ‘N’ exhaustive, mutually exclusive and

g2 equally likely outcomes and ‘m’ of them are favourable to the occurrence
of an event ‘A’ then the probability P (also called its success) of the

ice | occurance of the event A is given by,

the

by Favourable number of cases

de p=PA)=

of Exhaustive number of cases

eat m

pr "N

eV

The probability of non occurance of the event (also called its failure)
is given by,
Ly ke
q=! N
m
N
of =1 =p
Here, 0 <p <1
and 0 <g<1

al As m and N are non negative integers, P(A) = 0. Again, as the
favourable number of cases for A are always less than or equal to the
total number of cases N i.e. m < N; hence P(A) < 1. For any event A,

if P(A) = 0, then A is impossible or null event. Again, if P(A) = 1, then
A is a certain event.

:e The classical approach is stemming from its reliance on outcomes

g which are equally likely as well as finite in number. To overcome this

: limitation, the frequency interpretation of probability has been evolved

ie' according to which the probability of an event (outcome or happening)

e is the proportion of time that events of the same kind will occur in the

d long run. According to Von Misses, “If a trial is repeated a number of

| times under essentially homogenous and identical conditions, then the

g limiting value of the ratio of the number of times the event happens to the

| number of trials, as the number of trials becomes indefinitely large, is

i called the probability of happening of an event.” Symbolically, if an event

A, occurs ‘m’ times in a series of ‘n’ Trials, then the probability p of

f happening of event A is given by,




p =P(A) = lim— | K

n—mn

STOP TO CONSIDER
Terminologies related to Probability Theory :

1. Random Experiment : If in each trial of an experiment |
conducted under identical conditions, the outcome is not unique, but | |
may be any one of the-possible outcomes, then such an experiment is
called a random experiment. Examples of random experiments are :
tossing a coin, throwing a die, selecting a card from a pack of cards
ete,

2. Qutcome : The result of a random experiment is called an
oufcome.

3. Trial and event : Any particular performance of a random
experiment is called a trial and outcome or combinations of outcomes |
are termed as events, |

4. Exhaustive Events or Cases : The total number of possible
outcomes of a random experiment is known as the exhaustive events
or cases,

S. Favourable Events or Cases : The number of cases
favourable to an event in a trial is the number of outcomes which entail
the happening of the event and are known as the number of favourable
events. |

6. Mutually Exclusive Events : Events are said to be mutually
exclusive or incompatible if the happening of any one of them precludes
the happening of all the others, i.e., if no two or more of them can
happen simultaneously in the same trial.

7. Equally Likely Events : Outcomes of trial are said to be |
equally likely if taking into consideration all the relevant evidences,
there is no reason to expect one in preference to the others. (or in
simple terms, when the probability of happening of both the events are '
same).

8. Independent Events : Several events are said to be
independent if the happening (or non-happening) of an event is not |
affected by the happening (or non-happening) of the remaining events.

The third main approach is subjective approach was propounded by i
JM. Keynes and L.T. Savage. This approach interpreted probabilities as |‘
measuring the strength of one’s beliefs or confidence in the occurance of |
a particular event.

When an experiment is performed, it generates certain outcomes.
The outcomes are called sample points or elementary events. A collection
of all possible outcomes or sample points is called sample space. It is

8 ’ .,
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generally denoted by the leter S. For example, tossing an unbiased coin
have two sample points is head (H) and tail (T). The sample space will
be,

S={H, T}

If A and B indicates the events of obtaining a head and a tail
respectively, they are mutually exclusive events. i.e. outcome of one event
restricts the outcome of the other event. It can be denoted with the help
of a Venn diagram.

Diagram : Mutually Exclusive Events

This is an example of finite outcomes. In cases of large or infinite
number of outcomes, corresponding sample spaces are best described as
a statement or rule. Thus, if S is the set of odd positive numbers, we

write,
S={2k+1]k=0,1,2, ...}
Thus, according to the axiomatic approach, pmbability is dofined as
a function defined on events (Subsets of S). This set function assigns to
each event A, a certain real number P(A) which satisfies the following
three axioms.
Axiom 1 : (Axiom of Non-negativity)
The nrobability of an event is a non negative real number i.€.,
P(A) = 0 for any subset A of S.
Axiom 2 : (Axiom of Certainty)
The probability of a certain event is equal to unity. Le.
P(S) =1
Axiom 3 : (Axiom of Additivity)
Iif ALALA,,.. is a finite or infinite sequence of mutuaRy exclusive
events of S, then
PA VA VA L..)=PA)+ P(A) T PCA) F oo
i.e. the probability of the union of mutually exclusive events is the
sum of the probabilities of the individual events.
As postulated above, the axioms of probability apply only when the

9



sample space S is discrete, i.e. contains a finite number of elements UEx
an infinite though countable number of elements.

Let us understand, ats
Generally, we talk about probability as a fraction, a decimal or agg|
percent; for instance,
e If we toss a coin the probability of getting a head is 1/2.
¢ The probability that a baseball player will get a hit 1s 0.273.
» The probability that it will rain today is 20%.

1.3.1 Basic Probability Rules :

The following important laws of probability follow immediately from 1
the above given axioms :

i:If Ais an event in a discrete sample space S, then the
probability of occurance of event P(A) is equal to the sum of the
probabilities of the individual outcomes comprising A.

Thus, if O,, 0,, 0, ... be the finite or infinite sequence of outcomes
which comprise the event A then,

P(A) = P(0)) + P(0,) + P(0,) + ... M

L

Example

If a2 balanced coin is tossed twice, what is the probability of g
obtaining a tail on the first coin ?
Solution :

Here, the Sample Space (S) = {HH, HT, TH, TT}

If A denotes the probability of obtaining a tail on the first coin, then
the required event is, (

A ={TH TT}

P(A) = P(TH) + P(TT)

I : If an experiment can result in any one of ‘N’ equally
likely and mutually exclusive outcomes, and if ‘n’ of these
outcomes together constitute event A, then,

n
P(A) = N

Thus, the classical concept of probability can be derived from the
three axtoms in the special case when the individual outcomes of an
expeniment are all equally likely.

10
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Example :
From a bag containing 6 green and 3 brown balls, 2 balls are drawn
‘at random. What is the probability that both the balls drawn are green?

Solution:
2 balls can be drawn out of 9 balls in

9
’C, = 2131 =36 ways which are all equally likely.

!

2 green balls can be drawn out of 6 green balls in °C, = 2‘6 7
15 ways.

Hence the required probability,

15 8
36 12

Il : If A and A’ are complementary events in a sample space then,
P(A)=1-P(A)and P(A) =1~ P(A)

The complement of event A is denoted by A/. A’ is the event in S
which consists all the clements of S that are not included in A.
Example :

If we consider the experiment of tossing an unbiased coin, the
sample space is

S={H, T}
If A denotes the event of having head (H) in the toss, then,
= {H}

Then the complementary event A” denotes the event of having tail
(T), then
A= {T}
1

Hence, P(A)=1-P(A") = 1 - & = 0.5

IV : P($) = 0 for any sample space S, where ¢ denotes the null or
empty set. This shows that the probability of an event which is
sure not to occur is zero.
Example :

If we consider the experiment of rolling an unbiased die, the sample

he
in

space is
S={l,2,3,4,5, 6}
If A denotes the event of drawing a face numbered 7, then
= {7}
Hence, P(A)=¢ =0

11



V :If A and B are events in a sample space S, and A c B thet
P(A) < P(B)

Example : If A denotes the event of drawing a heart from an ordinary
pack of 52 cards, then 1

|-

P(A) =

If B denotes the event of drawing a red card from the same ordinary
pack, then

1
P(B) =

Here, Ac B
and P(A) < P(B)
V1: 0 < P(A) <1 for any event A in the sample space S.

VII : For the third postulate to be applicable, all the events A , A ,
A, ... must all be mutually exclusive. Hence it is sometimes referred
to a5 a special addition rule. For events which are mutually exclusive, the
more general additive rule applies.

But, If A and B are any two events in a sample space S, which are
not mantually exclusive, then

P(A U B) = P(A) + P(B) - P(A N B)

AnB S

We have,
AUB =Au(AnB)
P(Auw B) =P{A U (An B)}
= P(A) + P(A N B)
[Since A and {A m B) are mutually exclusive events] |
= P(A) + P(A A B) + P(A ~ B) — P(A  B) |

2 I
; |




then

nary

tary

=P(A) + P{An B) + (AN B)} - P(AN B)

[-- (AN B)and (A n B) are mutually exclusive events]

=P(A) +P(B)—-P(ANB) [-: P{(AnB)+(An B)}=P (B)]
Remark :

When the event A and B are mutually exclusive events, then

P(A N B) = 0 and hence
P(A n B) = P(A) + P(B)

The above additive rule is also known as the theorem of total
probability. This rule can be generalised. Thus, if the events 7 W -
A are not mutually exclusive, then

o n
P(A, + A, + ..+ A) =i§1 P(A) - ij?::l P(AA) + .. +

1) P(A, A, ... A)

SELF-ASKING QUESTION

Try yourself to prove all the basic probability rules with the help
of simple examples from day to day live.

Permutations :

A permutation i an arrangement of objects where order is
important. In general, the number of permutations can be derived from
multiplication principle.

Formula for computing the number of permutations of r objects
choosen from n distinct objects is r < n. The notation for these
permutations is P(n, r) and the formula is :

P(n,n)=n.(n-1)(n-2)... [n—(r-1)]

We often use factorial notation to rewrite this formula,

n!
(n-r1)!

P(n, 1) =

Combinations :

A combination is an arrangement of objects in which order is not
important. Here also r < n. Notation to renresent combination C(n, 1)
formula is,

n!

Cla5) :6:1')!1'!

13



N.B. |
Factorial n (= n) or n factorial (= n!) can be written as, | ‘
m=n!'=1x2x3x..x@n-1)xn

| |

1.4 Conditional Probability :

Two e\{cnts'A and B are said to be dependent when B can occur |
only when A is known to have occurred (or vice-versa). The probability |
attached to such an event is called the conditional probability. We |
sometime encounter situations where we are to estimate the probability '\"!
of occurance of an event A knowing that another event B had already
accrued. It is denoted by P(A | B) and is read as the conditional |
probability of A given that B has already occurred. P(B | A) can be |

similarly interpreted.

AnNnB

Suppose, we have a total of N outcomes in the sample space S of |
which "A outcomes are favourable to the event A while "B are favourable |
to the event B. Further let "AB be the outcomes favourable to both the
events A and B i.e. the compound event AB. From the above Venn
diagram it is clear that out of "B outcomes favourable to the event B, "AR
outcomes are also favourable to the event A. Hence,

"AB

P(A IB) = ——

"AB "B

N N

P(AnB)
P(B)
Similarly, it can be proved that, , |
P(ANB)
P(A)
It can be noted that conditional probabilities P(A B) and P(B IA) are

P(B iA) =
J

14
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defined if and only if P(B) # 0 and P(A) = 0.

Example :

If a card drawn from a pack of cards is red, what is the probability
that it is the queen of diamond?
Solution :

Let A denotes the event that the card drawn is red and B is the

‘event that it is the queen of diamond.

26
Hence, P(A) = 5—2
1
P(ANB) = )

P(ANB) _}__/5_9__:_1~
PB 1A)= "pay =26/ "8

Notice the following,
P(A N B) = P(A) P(B |A)
= P(B) P(A |B)

In other words, the probability of the simultaneous occurance of any
two events A and B (in the sample space S) is equal to the probability
of B multiplied by the conditional probability of A given that B has
already occurred. It is also equal to the probability of A multiplied by the
conditional probability of B given that A has occurred.

This rule is known as multiplicative law of probability or the theorem
of compound probability. The multiplicative law can be extended to-any
number of events.

Thus, fornevents A, A, ..., A, we have,

PANA N..NA)
=P(A) PA, |A)PA, |A, "nA)..PA A ANAN..OA)

STOP TO CONSIDER

When we know that a particular event B has occurred, instead
of S, we concentrate our attention on B only and the conditional
probability of A given B will be analogovsly the ratio of the probability
of that part of A which is included in B (i.e., An B) to the probability
of B. It therefore, reflects the change of viewpoint only, namely, instead
of S we have to concentrate on B only.

15




1.4.1 Independent Events :

Events are said to be independent of each other if happening of any
one of them is not affected by and does not affect the happening of an
one of the other.

If A and B are independent events so that the probability o
occurance or non-occurance of A is not affected by occurance or non-
~occurance of B, then we have

P(A IB) =P(A) and P(B | A) = P(B)

Hence, if the two events A and B are independent the multiplicative
rule reduces to.

P(A n B) =P(B) P(A |B)=P(B) P(A)

and P(A " B) =P(A) P(B |A)=P(A) P(B)

This is multiplicative law of probability for independent events. Thus,
two events A and B are independent if and only if]

P(A N B) = P(A) P(B)

Corollary I :
Itcanbe easily deduced that if A and B are independent, then
(a) A and B are independent.
(b) A and B are independent.
(c) Aand B are independent.

Corollary II :

IfA, A, .., A are ‘n’ independent cvents with respective
probabilities of occurance, P(A,), P(Az) - P(A ) respectively, then
the probability that at least one of the ‘n’ events occur is given by,

P(AVAL ... VA )
=1-[{1 -P(A)} {1 - P(A)}.... {I-P(A)}]
=1-[P(A) P(&) ...P(A)]

1.4.2 Pairwise Independence and Mutual Independence :

Let, A, A, ..A_be ‘n’ events associated with sample space S.
They are said to be pairwise independent if,

P(A. N Aj) =P(A) P(Aj); vi#j=12,..n

On the other hand, A, A, ... A are mutually independent if,
(1) PA N A,.) = P(A) P(Aj) ;iy=1,2 ..n
() PAn Aj N A) = P(A) PA)PA);i#j#k=1,2,.n

(n-1) PA NA N..0 An).= P(A)) P(A) ... F{(A)
R
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" Thus, the total number of conditions for the mutual independence of

‘the events A, A,, .... A_events are,

0G5 30 ki 36, =06 A G e B06) - G = NG
=2"~1-n

In particular for three events A , A, and A, (N=3) we have the
following 2° —1—3 = 4 conditions for their mutual independence.

P(A,NA,)=P(A)P(A,)
P(A, NA;)=P(A,)P(A,)
P(A, NA,)=P(4,)P(A,)
P(A, A, NA;)=P(A,)P(A,)P(A,)

Hence, events are mutually independent if they are independent by
pairs, and by triplets and by quadruples and so on. Again, mutual

- independence implies pair wise independence though the converse is not

necessarily true.

15 Baye’s Theorem :

Baye’s theorem is based on the formula for conditionat probability.

IfE, E,, .... E_ are mutually exclusive events with P(E) # 0, (i=1, 2,
n

., 1) then for any arbitrary event A which is a subset of .~/ E, such

=]

that P(A) > 0,
We have,

P(E;)P(A[E))

P(E,1A) =
Sz 1 P(E,)P(A[E,)
) B

(1) The probabilities P(E)), P(E,), ... P(E ) are referred to as
‘apriori’ probabilities, since their values are already known even before
the actual experiment is carried out. .

(2) The conditional probabilities P(A |E),i=1,2, ..., n are termed
as likelihoods since they give us the possible ways in which the event A
can occur, given the occurance of the events E, E,, ..., E

(3) The probabilities P(E; |A),1= 1,2, ..., nare known as the
‘posteriori’ probabilities since they can be estimated only after the resuls
of the experiment are known.

Hence, the Baye’s: Theorem is used to obtain the ‘posteriori’

probabilities.

17



P(E |A), (1=1, 2, ...., n), that is the probabilities of the even S
‘E,, E,, ... E_ knowing that the event A has occurred in the experiment

SELF-ASKING QUESTION

Do you think there is any difference between general conditional | :
probability and Bayes’ Theorem? Justify your answer.

1.6 Solved Examples :

Example 1. An urn contains 8 red, 3 white and 9 black balls. If 3 b
are drawn at random, determine the probability of the event that,

(i) Al three balls are red,

(11) All three balls are white,

(iii) Two are red balls and one is black ball. L
’ [GU. (MA/MSc.) 95)

Solution :

3 balls can be drawn out of 20 balls in °C, = 1140 ways.

Which are equally likely and mutually exclusive events.

(1) 3 red balls can be drawn out of 8 red balls in *C, = 56 ways.

Hence, the teqmrcd probability that all three balls are red is, ‘

il

6, .56
2"c T 1140 l

(i1) 3 white balls can be drawn out of 3 white balls in °C, = 1 way. | I
Hence, the probability that all three balls are white is, :

ey i ’
20 C; = '1—1‘26" i;
(iii) 2 red balls can be drawn out of 8 red balls in 'C, ways. One | .

black ball can be drawn out of 9 black balls in °C, ways.
Hence, 2 red balls and 1 black ball can be drawn in l

’C, x °C, ways.

Hence, the probability that 2 balls are red and 1 is black is given I
by, '
'C,x’ ¢, _28x9 252 !
YOy 4 ITAGEETTAD

Example 2. Two digits are selecwd at random from the dlglts 1 through |
9. If the sum is even, find the probability P that both are odd.

[GU. (MA/MSc) *96] |
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There are 9 digits i.e. 1,2, 3,4, 5, 6, 7, 8 and 9 of which 5 are
odd viz. 1, 3, 5, 7, 9 while 4 are even viz 2, 4, 6, 8.

Two digits can be drawn at random out of 9 digits in °C, ways
‘which are equally likely and mutually exclusive events.

The sum of the digits drawn will be even if either both the digits
drawn are even or both of them are odd.

Now, let E denotes the event that sum of the two drawn digits is
‘even.

E, be the event that both the digits drawn are even, E, be the event
that both the drawn digits are odd.

Hence,

95]

By the addition theorem of probability
l 5. -8

6 18 18
Hence, the conditional probability that both the digits are odd, given
that the sum is even is given by,

‘ P(E,NE)
P(E,IE) = "“—P‘@T"

P(E,)
= P(E)( E, is a subset of E)
e

5 8

s
—_— e —
-

18 18
5

4 8

I

Example 3. If for a mutually exclusive and exhaustive events Aand B,
P(B) = 2 P(A) and A U B = S, Find P(A).
' [GU. (MA/MSc) "97]
h Solution : Given, AuUuB=S§
= P(A) U P(B) = P(S)

= P(A) + P(B) = 1 [+ A and B are MEE]
19 '




=P(A) + 2P(A) = 1 .

L | ==

= 3P(A) =1 = P(A) =

1 i 1
Example 4. If P(A) = IE P(B)= 3 and P(AB) = Iz Find P(A + B

[GU. (MA/MSc.) *99
Solution :

P(A + B) = P(A) + P(B) - P(A N B)

-

2
3

LSl
0 |
N | =

Example 5. Suppose, A and B are two events and that P(A) =P,
P(B) =P, and P(A N B) =P,
Find (i) P(AUB) (i) P(AAB) (i) P(A B)
(iv) P(A N B) (v)P(A|B)
(GU. (MA/MSc.) "99]
Solution : |
The two events are not mutually exclusive.
(i) P(A U B)= P(A) + P(B) - P(A N B)
=P +P -P .
(i) PANB) = P(AB) |
=PO)-PP+P,~P)

=] PP P
(i) ANB) =P(A) - P(A N B)
=P|—P3 ‘
(ivyP(An B) =P(B)- P(A N B)
=P2"P3
P(ANnB) P
(V)P(AIB)?_FB)" = }:

Example 6. In a simple throw of two dice, find the probability of
obtaining (i) A sum of 9 on both the dice (ii) A sum less them 8.

[GU. (MA/MSc) '02]
Solution :
Total number of cases = 6 = 36
(i) Fayourable number of cases = (3, 6) , (6, 3), (5, 4), (4, 5).
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.. Required probablhty 34 P ;

(i1) Favourable number of cases =

{(1,2), (1, 3), (1,4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4,
+B)f 2.5.,1.3,2),3,3),3,4, 4 1),%,2), 3), (5, 1), (5, 2),

{6, 1}
|’99~]

Example 7. An unbiased coin is tossed 3 times. If A is the event that a
head occurs in each of the first two tosses, B is the event that a tail
occurs on the 3rd toss and C is the event that exactly two tails occurs
in the 3 tosses, examine wheather events (i) Aand B (ii) B and C are

[GU. (MA/MSc) "02]
'B) I Solution :
Total number of cases =2° = 8
991 Favourable cases for event A are = HHT, HHH
Favourable cases for event B are = HHT, TTT, THT, HIT
Favourable cases for event C are = TTH, THT, HTT

)
-~
&
Ii
B

C
-
il
ool oo|H ool
{}
N | =

P(C)
(i) Favourable cases for (A N B) is HHT

1
PANB)=3

| .
PO PB) = %75
-. P(A N B)=P(A) P(A)
. A and B are independent evenis.

(it) Favourable cases for (B N C) is HTT, THT




P PC - lxgzi |
(B) PC) = 5 8 16 |
Here, P(B N C) = P(B) P(C) '

. B-and C are not independent events.

B speaks the truth are 5 : 3. In what percentage of cases are they likely®
to contradict each other on an identical point? ;

[GU. (MA/MSc) *03]

Solution : Given,

3
Probability that A speaks truth = e

- _.3 ;
Probability that B speaks truth = 5+3 8 r
We have the following mutually exclusive events.

Let, a be the event that A speaks truth and B does not

b be the event that B speaks truth and A does not

P(a)=éx(l—§)=’-9_

| Wb W | w

5 8) 40

S ) R
P(b)—(l SJX8 y

- Required probability P(a w b) = P (a)+ P (b)

. Percentage of cases in which they are likely to contradict cach
other is,

12 x100% =475%
40

Example 9. 12 balls are distributed at random among 3 boxes. What is
the probability that the first box will contain 3 balls ?

[GU. (MA/MSc) "04]

Solution :
Total number of cases = 312

From 12 balls 3 balls can be choosen in *2C, ways and remaining
9 balls can be distributed to the remaining two boxes in 2° ways.
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.. Favourable number of cases,

12C3 % 29
12 C 29
-, Required probability = —33;— =0212
ot CHECK YOUR PROGRESS
kely £ | |, What are the basic probability rules?
»03] ' [G.U (MA/MSC) Prev. ’05, ]0]

2. Give the axiomatic definition of probability.
[GU(MA/MSc) Prev *06]
3. Define Baye’s theorem.  [GU(MA/MSc) Prev 05, ’07, '09]
4. Define conditional probability. An urn contains 7 white, and 5
black balls. Two balls are drawn at random one after the other without
replacement. Find the probability that both balls drawn are black.
[GU(MA/MSc) Prev *05, "10]
5. What are the basic theorems of probability? In a single throw with
two dices, find the probability of getting a sum of (a) 8 and (b) 11.
, [GU(MA/MSc) Prev '09)
- |6. Explain the concepts of equivalent events, independent events and
conditional probability. Use the theorem of total probability to show
that P(A + B) = P(AB) + P(A B) + P(BA)
[GU(MA/MSc) Prev *93]
7. In a class there are 40 boys and a certain number of girls. The
probability of selecting a-girl at random is 3/7. How many girls are
there in the class? . - [GU(MA/MSc) 00)
8. IfAand B are any two events in the sample space S which are
not mutually exclusive events, show that (i) P(A) = P(A M B) (ii) P(A)
<P(A LU B) [GU(MA/MSc) Prev 98]
9. The probability that a boy will get a scholarship is 0.90 and that
a girl win get it is 0.80. What is the probability that at least one of them
will get the scholarship? [GU(MA/MSc) Prev *92]

ch

is 1.7 Random Variable — Discrete and Continuous :

A random variable is a numerical valued function defined on a

4] sample space. The variable is called random variable because its value

is determined by the random outcome of the experiment i.e. the outcome

which depends on chance only. If S is a sample space with a probability

measure and X is a real valued function defined over the outcomes of S

& (denoted by X) then X is termed as a random variable. The set of values
which X assumes is called the ‘spectrum’ of the random variable X.
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For example, if we toss three unbiased coins, the number of hea
(X), constitute a discrete random variable. In notation of set theory,
can be expressed as,

X=x:x=0,1,2,3)

In this example, X is a discrete random variable. More precisety, i
X is a real valued function defined on a discrete random space, it is call
a discrete random variable. In other words, if the random variabl
assumes only a finite or countably infinite set of values it is known
discrete random variable.

On the other hand, if X is a real valued function defined over
continuous sample space, it is called a continuous random variable.
other words, if the random variable can assume all possible valu
between certain limits i.e. uncountably infinite number of values, it i
known as continuous random variable. For example, if X denotes th
height of students of the Economics Department of Gauhati University,
is a continuous random variable, for it can assume any value, say
between 5 feet and 6 feet. In set notation,

X={x:55x56}

1.7.1 Probability Mass Function :

If X is a discrete random variable taking at most a countably!
infinite number of values x , X, .... then its probabilistic behavior at each
real point is described by a function which is called probability mass
function. It is defined below :

If X is a discrete random variable, the function given by
p(x) = P(X = x) for each particular value, x assumed by X within its
elements, is called the probability mass function (p.m.f) of X.

A function p(x) can serve as the probability mass function of a
discrete random variable X, if it satisfies the following conditions.

1. p(x) = 0 for each value within the domain of X.

2. 2 p()=1,

. ( The summation extending over all the values assumed by X )

1.7.2 Probability destribution of a Discrete Random variable X :

The set of all possible ordered pairs of values assumed by the
discrete random variable X and the corresponding probabilities, {x,
p(x)} is termed as the probability distribution of the discrete random
variable X. It tells us how the total probability of a discrete random|
variable X is distributed among the different values assumed by X. It is|
usually depicted in a tabular form as follows, '
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‘heads Probability distribution of the Discrete Random Variable X.

ory, X
X =x X, Xy ek X
pX=x):| p(x)=p, | PX) =P, | - p(x,) =p,

ety, if

called

riable %

o as If three unbiased coins are thrown, then the probability distribution
of the number of heads (X) is as follows,

Rer 2l X=x 0 1 2 3

le. In 5 1 3 E il

, 1L 1S

s the ote :

ity, X Random variables are also called simply variates and are denoted
Y capital letters X, Y, ... whereas their specific values are denoted
tively by small letters x, , ...

1.7.3 Probability Density Function :
If X is a continuous random variable, the probability that X assumes
aparticular value, say c, is effectively zero, that is P(X =¢) = 0. In such
ably £4 case, it is more relevant to obtain the probability that the continuous
cach Erandom variable X lies within a range of values say between a and b
nass Twhere a < b.

The definiton of probability in the continuous case presumes, for
| !’Y such a variable, the existence of a function, called the probability density
1its Efinction (p.d.f) such that by integrating it within some specified limit we

obtain the probability that the variable X lies within that particular range
of a fofvalues. '

In other words, if f{x) is the p.d.f of the continuous random variable

X, then

>
plasx<b)=[ f(x)dx
Where a and b. are any real constants, witha <b

X : A function f{(x) can serve as the p.d.f of a continuous random
variable X which can assume any value between —oo and 4o, only if

{x, it satisfies the following conditions

om (1) fix) 20, for 0 £x<
DM e

tis (&) j f(x)dx =1
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(1ii) The probability P(E) given by

P(E) = J; f{x)dx

is well defined for any event E.

>
-

y =1

v
o

In the diagram, the probability that the continuous random variab
X lies between a and b is given by the area bounded by the y = f{}
curve, the X axis and the ordinates at the points X =a and X =b. T}
y = f{x) curve is known as the probability density curve or simply tl
probability curve. The expression f{x) dx, also written as d F(x) is know
as the probability differential.

In case of discrete random variable, the probability at a point
P(X = c) is not zero for some fixed c. However, in case of continuoi
random variables the probability at a point is always zero i
(P(X = c) = 0) for all possible values of c.

SELF-ASKING QUESTION

Try yourself to distinguish between probability mass function anc
probability density function -

1.8 Mathematical Expectation {

If X 1s-a random variable which can assume any one of the valu
X, X, . , X With respective probabilities p,, p,, ..., p, then t
mathematical expectation of X, usually called the expected value of
and denoted by E(x) is defined as,

E(X) = plxl 3 p2X2 et pnxn

=2pX where, p =p, +p, tuz +p =1
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If X is a discrete random variable and f{x) is the value of its p.m.f.
at the point X = x, the mathematical expectation or expected value of the
i random variable X is given by

E(X)= X x £(x)
If X is a continuous random variable and f{x) is the value of its p.d.f

Pat X = x, the mathematical expectation or expected value of the

tinuous random variable X is given by,

By = | xf00dx
In the above two difinitious, it is assumed that the sum or the integral

)f exists otherwise, the mathematical expectation ceases to exist.

mple : )

Let, the descrete random variable X denotes the number of heads

obtained when 4 coins are tossed. We get the following p.d.fof X.
X 0 1 2 4
i 4 6 4 1
pX) 16 16 16 16 16
E(X) =2 x; P

=0x-l—+lx—4—+2x£+3xi+4x—l— =2=
16 16 16 16 16
In the above example we cannot expect to obtain the value 2 in
actual experiment for all times. Rather, if an experiment is repeated a
Jarge number of times under essentially homogenous conditions, then the

| average or mean of the actual outcomes constitute the expected value of

§ the variable.

STOP TO CONSIDER

Theorems on Mathematical Expectation :
(i) If “a’ is a constant, then E(a) = a.
Proof :
Let X be the random variable which takes the values x, x,, ...
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with respective probabilities
P(x,), P(X,), ..., P(x)

E(X) = Eixi P(x;)=x,P(x)) + x,P(x,) + ... + x_P(x)
Let, X = a (constant)
E@ =aP(x)+aP(x)+..+aP(x)

=a {P(x,) + P(x,)) + ... + P(x)}

=a. ]

=a

(ii) If ‘a’ is constant and ‘X’ is a random variable then

E(aX) = a E(X)
Proof :
For a random variable X, we have

E(X)=Z xp,

#B@X)= Zaxp,~ aZxp= aB(X)

GHE{X-EX)}=0
Proof :
E{X-E(X)} = E(X) - E{E(X)}
= E(X) - EX) [-- E(X) = constant)
=0 |

(iv) If a and b are constants and X is a random variable, then
E@X +b)=aEX)+ b
Proof :

Let X be a random variable which takes the values x, x,, ..... x
with respective probabilities p , p,, .... p_.

E (aX +b) = 2 (ax, +b)p,
= (ax, + b)p, + (ax, + b)p, + ... + (ax_+b) P,
=a(x.p, +xp,+ ...+ xnpn) + b(p, +p,+ .. +p|
=a§&m+b§m

=a E(X) + b.1
=a E(X) + b.

28
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1.8.1 Rules of Mathematical Expectation :

(a) The Additive Rule of Expectation :

The mathematical expectation of the sum of random variables is
equal to the sum of their expectations, provided all the expectations exist.

Thus, if X and Y are two random variables, then
EX +Y) = E(X) + E(Y)."
Proof :

Suppose, the random variable X assumes the values X, X,, ..., X,
with respective probabilities p,, p,, ..., p, then expectation is -

E(X) = 2 %,;.----(0)

Let, Y be the other random variable, which assumes valuesy,, y,,

....,- y,, with respective probabilities p',, Py -eue » P Then the expectation

is,
E(Y) =2 yp'yiieea. (ii)
=1

Again, the sum (X +Y) would be a random variable which can take
m x n values (x, +y)i= 1.2 e 2 12,
By definition,

E(X+Y) = Z z(x1+y)pq

= EE +22
1 =1 npu Y_]pu

i=] j=1

3 P;

=) joi = 4 =l
n m /
= El Xp; + E‘ Y;P;

= E(X) + E(Y) (using (i) and (i1))
The above result can be extended to any number of variables. Thus,

if A A, . A aren random variables, we have,

B(A, ¥ A+t A)= E(A) + E(A) + ... E(A)
In the above theorem if X and Y assume a finite number of values,
then E(X) and E(Y) always exist. However, if X and Y assume an infinite

number of values, then the additive law of expectation viz
E(X +Y) = E(X) + E(Y) holds only if the exputations exist, that is

provided

él'xipi|<°° and 'j§,|Yij/|<°°
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(b) Expectation of a Linear combination of Random Variable
Ifxl, X,, ... , X_ are any n random variables and ifa , a,, ... , a_are

any n constants, then ’
E(“n:l aixi)’__ in a,E(x;)

(c) The Multiplicative Law of Expectation :

The mathematical expectation of the product of a number of
independent random variables is equal to the product of their

expectations.
Thus, for any two independent random variables X and Y. i
E(X . Y) = E(X) E(Y)

Proof :

Suppose, X is an independent random variable which takes the
values x,, X,, ...., X, with respective probabilities p,, p,, ..... p,, then
mathematical expectations is, |

Let, Y be the é.nother independent random variable, which can take

'

the values y,, y,,....., y,_ with respective probabilities DD s Pk
The mathematical expectation is,

E(Y) = E yipj' ........ (ij)
=1 ~

The product XY would also be a random variable which can |
assume mn values xy, (i=1,2,..0)(j=1,2, ..., m)
By definition,

E(XY)=Z Z x;y;p;p;'

n m
=2 X;p, j§1 y;p;'

el

= E(X) E(Y) (Using (i) and (ii))
‘ The above result can be extended to any number of independent
; - random variables.

It should be noted that the multiplicative theorem of expectation
holds only for independent events while no such condition on the
variables is required for the additive theorem of expectation.

SELF-ASKING QUESTION

|

Try yourself to prove the rules of expectation with the help of | |

simple numerical example.
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1.8.2 Variance in terms of Expectation
J If X is a random variable, then Var (X) = E(X?) — {E(X)}?
pre Var (X) = E[X ~ EXOF _
= E[X? - 2XE(X) + {EX)}]
= E(X) - 2{E(X)}* + {EX)F
= E(X?) - {EX)}

of | Theorems on variance :
eir § (i) Var (C) = 0 where C is a constant.
Proof :
We have,
Var (X)= E[X - EX)J*
Var (C)= E[C — E(C)
he = E[C - C]z
3 = E(0)2 =0

(ii) Var (X  C) = Var (X)
Thus, variance is independent of change of origin.

ke :
Proof :
We have,
E(X + C) = E(0) + E(C)
=EX)+C
4 By definition,
' Var (X + C) = E[(X + C) - EX - O)F
=E[X - EX)F
= Var X.

Similarly, it can be proved that,
Var (X — C) = Var (X)

(iii) Var (aX) = a* Var (X)
Thus, variance is not independent of change of scale.
Proof :
Var (aX)= E [aX — E(aX)}?
= E[aX — aB(X)J’
= E[a{X - E(X)}
= a? E[X - EX)J?
= a? Var X.

t
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1.8.3 Covariance in terms of Expectation :
If X and Y are two variables with respective values (or means) ¥
and ¥, then the covariance between X and Y is defined as,
Cov(X,Y) =BX-X)(-7)]
= E[XY - XE(Y) - EX)Y + E(X) E(Y)]
[+ X=E(X) & Y=E(Y)]
= E(XY) - E(X) E(Y) - E(X) B(Y) + E(X) E(Y)
= B(XY) - E(X) E(Y) |
If X and Y are independent,
Cov(X,Y) = E[(X-X) (Y-Y)]=0
Thus, the covariance of two independent variables is zero.

~ STOP TO CONSIDER !
Variance of a Linear Combination of Random Variables :
LetX, X, ..., X, be n random variables with finite variances
» S s RO | A

Thus, t= aX +aX +..+aX isalinear combination of random
variables where a,a,, ..., 2a are constant.

Now, E(t) = a,E(X,) + 8, E(X,) + ... + 3. E(X)
=>t-E(t)=2a,[X - E(X)] +a, [X,-EX)] + ... +a [X - B(X)]
Squaring both sides and taking the expected values we have,

Var (t) = a? Var (X)) +a,” Var (X,) + .... +a2 Var (X ) + 2aa,
Cov (X, X)) +..+2a_ a Cov(X_, X)

% a? Var (X,) #2 £ aa,Cov(X;, X,)

i=] i<y=]

Corollary I :

IPg; = l,a2=1,aj=;14=....=au'=0

then Var (X, + X)) = Var(X,) + Var (X)) +2Cov (X, X))
Corollary I1 :

Ifa,=1l,8,=-l,3=a>=..=a=

then Var (X, - X,) = Var (X,) + Var (X,) - 2 Cov (X,, X,)
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Corollary 11 :
If X, and X, are independent variables, then Cov (X, X,}=0

Hence, Var (X,  X,) = Var (X)) + Var (X,

1.9 Solved Examples :
>] Example 1. A box contains ‘a’ white balls, ‘b’ black balls, ‘c’ balls are
() drawn. Find the expeciations of the number of white balls drawn.
{GU (MA/MSc) Prev. "92]

tion :

Let us associate a variable X, with the i-th draw such that,

x.= 1 if the i-th draw results in a white ball.

x, =0 if the i-th draw resuitsin a black ball.

Then the number of white balls drawn among ¢ balls is

S = bk, F. X,
S ES)=Bx, + X, + ... 1257
= E(x,) + E(®) + oo + B(x)
Now, E(x) = 1 . p(x; ='1) + 0 . P (xi =0)
a b
= 1. +0. .
» a+b a+b
a
= =, 22,
a+b @ ©)
)]
-Eg~a+a+ + ¢ fimes
N i Rl R a+ N
az a
= C
a+b
‘Example 2. A box contains 12 items of which 3 are defective. A sample
‘of 3 items is sclected at random from this box. If x denotes the number
‘of defective items, ﬁnd mathematical expectation and variance of X.
[GU (MA/MSc) Prev. '94]
Solution : 3 balls can be drawn out of 12 in 2C, ways.
If X denotes the number of defective items we have the foilowing
probability distribution.
X: 0 1 2 3
] 84 1 27 1
| PO #no B0 20 20
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Example 3. Suppose that we have a series of n independent trials, 1
probability of success being p, for the i-th trial. Show that the me!

n
number of success is £ p,. Also find the variance of number of succef
i=1

Solution :

How we have got the table values ? Like this,

9 9 3
P(X=0)=Cs_ 84 p(x=1)=-CX'C, _ 108
c, 20z ’C, 220
9 3 '
P(X=2)s <G 2T
. C, 220
g 5 1
PX=3)=me
3

Hint : In this case, P(X = 0) implies all balls drawn are not defec

Similarly, P(X = 1) implies out of 3 balls 1 is defective and the o
are not defective.

So, E(X) = % x,P(x,)

= 0x8%00+1x 1087 4220 +3x 11

165
220
We know that,

Var (X) = E(X?) — {ECO)?

Now, E(X?)=0"x 8%20+ 1 x 10%20 #22 x 2%20 +3% x yzz

_2s
220

225 (165Y
Var (X) = 556 - m

_ 49500-27225 .48
B 48400 T

[GU (MA/MSc¢) Prev. 9

Let, X =1 ifthere is success in ith trial and X. = 0 if there is faihi

in 7th trial.

Thus, we get the following probability distribution of X,
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X : 0 1

D8 PX): (1-p) b,
20 ° .
~EB(X)= Zl x;p;
=0x(1-p)+1xp,
D :
Let, S is the number of success in n trials
S=X +X, + ..+ X
ctive - B(8) = E(X)) + E(X)) + ... + E(X)

=p1+pz+""+pn =.zpi

Variance of X, = E(X?) — {E(X)}?
E(X?) “ é x;p; =0%(1 —p) + 1%p, = p,

Var (X)= p, - p’
.. Var (S) = Var (X) + Var (X,) +.... + Var (X))

=@, -p)+®,-p)+ ..t ®,-p)

= Z@-p})

Example 4. 3 coins whose faces are marked 1 and 2, are tossed. What
is the expectation of the total value of numbers on their faces ?

620 _ [GU. (MA/MSc) Prev. 98]
¢ ution .
- Let, X denotes the total value of numbers of 3 coins. We have the
following probability distribution of x.
X 6

3 4 5
PX): M R . h A

[Try to find out how P(X) s are determined ]

G 2 [ o= B S SplE
cank EX)= E,‘xipiz 3x-8—+4x~§+5x§+6x-§=?=4_5
98] Example 5. If two dice are thrown find the mathematical expectation of
‘ptbe sum’of the numbers. [GU. (MA/MSc) "00]
Solution

- Let, X denotes the sum of the numbers when 2 dice are thrown. We
get the following probability distribution.
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Raclooysl g SeRRHBes s .7 8

I
PX):35 36 36 36 36 36 36
X3

(VS

9

ek B g
(X)'36 36 36 36
s E(X) = ):3I X;p;

2xi+3x—2——+4x—3—+5xi+6x'—5—+
36 36 36 36 36

2 1
36 36 .36 36" 36 36

il
I
~

Example 6, If ‘n’ dice are thrown, find the expectation of the
(i) sum of points on ‘0’ dice.
(i) Product of the points on ‘n’ dice [GU. (MA/MSc) Prev. ’
Selution :
Let, X, denotes the number on a die when thrown.
Then X can take any one of the values 1, 2, 3, 4, 5, 6 each w

1
equal probability rt

1 1 7
Hence, E(X) =gx1+%><2+....+-6—x6= 3 i=L2....4

(i) Now, the sum of points obtained on ‘n’ die, S is given by
S=X + X+t X
S E@)=EX + X + . +X)
=EX)) + E(X)) + ... + E(X)

T T st iy
= —+—+—+.+— (n times)
37 A0 KT, 2
n
Hence E(S) = >
(ii) The product of the points obtained on ‘n’ dice is
P=X X X
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e BP) = EX, - X, ... X)
= B(X,) E(X,) . B(X)
(Since X, X, ..., X are independent)

1 7 3
. T e T dssssssnn ntlmﬁ
L

Example 7. A coin is tossed until a head appears. What is the
expectation of the number of tosses required? [GU. (MA/MSc) "01]
Solution :

% Let, X d-en(.)tes -the number of tosses required. We get the following
probability distribution of X.

Now,
Event X PX)
H i =) >
2
',Ol' TH 2 _'l_x_l___l_'
e i
iSO
w1 LTy Sl il e
b 3 2%27°27%
TTTH 4 -l—x-lxlx-l-—_l.
: R T T T S
1), .
1 B(X) = £ xp(x,)
=l><l+2x——+3x——+4x—'1—+ ........
2 16
Let E(X)=S
.S =1x%+2x%+3x}§+4x}{6+ ........ (@)
R | 1 1 1 |
—S=—4+2x—43x—+4x—+........ i
=?2 4+ x8+ ><16 x32+ 4 ,(11) v
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. Example 8. Aman wins a rupee for a head and loss a rupee for a tail,

R A AV A AVARSAVARS AV A R

(Which is a infinity term of G.P. Series)

- EX) =2
Expected number of tosses is 2.

when a coin is tossed. Suppose, that he tosses once and quits if he wins,
but tries once more if he losses on the first toss. What is his expected
gain? [GU (MA/MSc) '04] |
Solution :

Let, X denotes the gain of the man in rupees. Thus, we get the |
following probability distribution function of X. :

Event : H TH FT
X: 1 ~1+1=0 o o Ea)
NP | 1 1
) 2 4 4
> = Ixax0x1-2x1l
E(X) =5 = xip(xi)_ . 4 : 4_

Thus, the man has neither expected gain nor expected loss.

Example 9. A die is tossed twice. Obtaining a number less than 3 is
termed as a success, obtain the probability distribution and hence the
mathematical expectation. [GU. (MA/MSc) ’05]

Solution :
Let, X denotes the number of success. We have the following
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probability distribution function of X.

X: 0 1 2
! 4
) PX: Y % K
EX) = E‘lxip(xi) .
= 0><i+lxi+2><i
9 9 9
=133
CHECK YOUR PROGRESS

1. Define mathematical expectation of a random variable. State the
basic theorems of mathematical expectation. Prove that E(X +Y)
= E(X) + E(Y) [GUMA/MSc) Prev ’05]

2. Define mathematical expectation of a random variable. If X and Y
are independent events, show that E(XY) = E(X) . E(Y).

: [GU(MA/MSc) Prev *06]

§ |3. Define Random variable.

' : [GU(MA/MSc) Prev *08]

Give various theorems of mathematical expectation.

[GU(MA/MSc) Prev '09]

5. Show that Var (X) = E(X?) - {E(X)}?

[GU(MA/MSc) Prev 91, 96]

e - |6, Show that the covariance of two independent variables in equal to
zero. But the converse of this is not necessarily true.

[GU(MA/MSc) Prev *02, 03]

7.  Find the expectation and variance of the number of successes in a
series of ‘n’ independent trials. The probability of success in the i-
th trial being P,. [GU(MA/MSc) Prev *06]

8. Two cards are drawn without replacement from a well shuffled pack
of cards. Obtain the probability distribution and hence the expected
number of face cards (Jack, Queen, King and Ace).

9. Obtain the mean and variance of Y = 2x, +2x, + 4x, where x , x,
and x, are three random variables with means given by 3, 4, 5
respectively and variance by 10, 20 and 30 respectively, and
covariance by 6, =0, 5,, = 0, 6,; = 5 where o, = Cov (x, xj) :

R e
S

1.10 Moments : In Statistics, we talk of moments of random
variable about some point. The term moment is used to describe the
various characteristics of a frequency distribution like central tendency,

- variation, skewness and kurtosis etc.
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1.10.1 Moments about the Origin :

If X is a discrete random variable, the rth moment about the orig
of the distribution of X, is the expected value of X".

In symbol,

p! = EX) = 2x"p(x) r=20,1,2,3 ..
where p(x) is the p.m.fat X = x

If X is a continuous random variable,

o0

p/=EX) = f Xf(x)dx,  where f{x) is the p.d.f of X.

—t)

From equation (i) it follows that,

B, = E(X°) = E(1) = 1

i’ =E(X') = u (the mean of the distribution)

Hence the first moment about the origin is the mean of th
distribution.

u! = EQX) = 22 p(x)

B/=ECC) = Txp(x)

1.10.2 Moments about the mean or Central Moments :

If X is a discrete random variable, its rth moment about the mean,
termed as the rth central moment, denoted by p_is the expected value
of (X — p).

. In symbol,

k= E[(X - p)]= Z (x - py p(x), r=0,1,2 3. (2)
If X is a continuous random variable.

o

wo=E[X -] = | (x - py fdx

-

From equation (2) it follows that,

M, = E[(X - p)°]=E(1) = 1

M, =El(X-pW]=EX)-EM) =0  [since E(X) = E(u)]
K, = E[(X — py]

The second central moment is the variance of the distribution of X

and shows the disperssion about the mean. It is conventionally denoted
by o’.




Central Moments expressed in terms of Moments about the

igin e :
= B[(X — p)’]
=E(X* - 2pX + p)
(i) = E(X?) — 2pE(X) + E(1?)
= E(X?) - p? - [since E(X) = p=p/]
-— l»l,' o ull 2
Similarty,
1= E[(X — p)’]
= BOC ~ 3uX? + 3p’X — 1)
= E(X®) - 3uE(X?) + 3p?E(X) - E(1’)
= py = 3+ 20 [since E(X) = p=p, ]
In the same way, it can be shown that
ihie ' B, = l~"4'/ 25 4‘13/“‘/ + 6}4211‘-1'2 o 3“114
In general,
| #, = E[X - p)]
| = E[X* = 'C,X™ p + 'C, X2 ... + (~1)p]
= ur/ G !C'll“ll.l plI T, 2“'/-2 p‘IZ ...... + (_.l)l' v
. Puttingr =2, 3, 4, ... in the above equation, u,, p,, i, ... can be
ot imned in terms of moments about the origin.
an,
e §1103 Moments about an Arbitrary Constant (a) :

The r-th moment about an arbitrary constant 'a’ is defined as

2) p=EX-ay
Thus, p"=EX-2)°=E(l)=1
’ u'=E(X - 2)' = EX) - B@) = /- a
u2‘= E(X ~a)? = p/— 2ap/ + a*
S=EX-a)y= u,’ 3ap,) + 3ap/ - 2
p:— E(x — a)* = p/— dap/ + 62’/ — 42’/ - a*
lnsmml,
p?=EX - a)
] - = E[X*— 'C, Xrla +1C, X% — ...+ (-1Ya]
b ) =pn! - Cap + ’Czazp’r,‘2 i +. (—1)a" .
o Thus, if the moments about any arbitrary points are given, the
| mesponding moments about the origin can be obtamod by using the
above relations.
Moments about the origin and moments about any arbitrary constan
%'are also known as raw moments.
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1.10.4 Moments about the mean in terms of moments about
arbitrary constant a :

=B —uy
=E[(X-2a) + (a—- W
= E[(X - 2) - 1T
2
=B(X- 8 —1p (K=o i K@)t + s (1)
2 T
=W - rClpr—l. mot rcz"r—z' Bt e
In particular, putting r =2
uz = ll; a (11,')2
Similarly, putting r = 3, 4 we have,
"13 o P;' = 3!-":!»‘,' + 2("‘|‘)3 .
i ; 2 4
!"l4 — u‘a o 4“3.}11. + 6}5.“1- o 3Pla |

1.10.5 Moments about any Arbitrary constant 'a’ in terms
moments about the mean :

p'=EX-ay
=E[X~-p) + (n-2a)f
=E[X-p)+ 1T :

=Haqu+QJX—uTH¢+q4X*w“u:+~~+w

. 2 v
=l rcl“r-x wot rcz"lr—z B T By
In particular, putting r =2, 3 and 4 in the above equation, we h{
i | W (18

TR TR g TR TR S (T i
B = By At G, () ()

STOP TO CONSIDER
Corollary :
1. For a symmetrical distribution, all the odd order central momet

are equal to zero.
2. The central moments are invariant to the change of origin but n

of scale. :
3. In order to know about the nature and form of a particular

distribution, we must have knowledge about a measure of centy

42




jut any

1

| estimated. Karl Pearson introduced the concept of Beta (B) and

[)r p'i.

| tendency (1 = p,’) a measure of disperssion (¢® = p,) as well as
measure of skewness and kurtosis.

\For deriving the latter 2 measures, the first four central moments need
10 be estimated. Hence higher order moments are generally not

Gamma (y) coeffecients, based on central moments, as a measure of
| skewness and kurtosis.

'.ll Skewness and Kurtosis :

_ Coeffecient of Skewness : Skewness refers to lack of symmetry
ie. when a distribution is not symmetrical, it is called a skewed
distribution. A measure of skewness is obtained by making use of the

second and third moments about mean. Here, B, is used as the

§ coefficient (measure) of skewness.
, -
M
Bi=53
T
= .
M By _ By _ B
Y:-}-ﬂ: e e el
: l M; Pz* (0'2)/{ VG

=
"“1.

s havel

Skewness means, mean # median # mode.

" Mean Med® Mode Mode Med® Mean  Mear=Med=Mode

Mean<Med<Mode Mode< Med<Mean Mean = Median = Mode
Negatively Skewed Positively skewed Symmetric

Symmetrical curves represent normal destribution. The
characteristics of these curves are that on being folded vertically from the
middle, the two sides exactly coincide.

Ifp, =0, the distribution is perfectly symmetncal otherwise it is
‘skewed. However, since B, is always positive it does not shed any light
2510 whether a particular distribution is positively skewed or negatively
skewed, in the event of it being skewed (B, #0). This limitation is
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removed in the case of Gamma coefficient ¥,» Which is defined as
positive square root of B,. From the , coeffecient, it is evident that i
is negative, v, is negative and the distribution is negatively skewed.
the otherhand, when y, is positive, ¥, is positive and the distributio
positively skewed.

Let us understand,

-® In case the distribution has a tail towards larger values we h
a positively skewed distribution.

e If the distribution has a tail towards smaller values we ha
negatively skewed distribution.

STOP TO CONSIDER

Difference between Skewness and Dispersion :

Dispersion is concerned with the amount of variations ra
than with its directions. Skewness tells us about the direction of
variation or the departure from symmetry. In fact, measures of skewn
are dependent upon the amount of dispersion.

P.S. It may be noted that although skewness is an impo
characteristic for defining the precise pattern of a distribution, iti
rarely calculated in business and economic series. Variation is by
the most important characteristic of a distribution.

Coefficient of Kurtosis :

Kurtosis enables us to have an idea about the shape and nature
the hump (middle part) of a frequency distribution. In other word
Kurtosis is concerned with the flateness or peakness of the frequend
distribution.

As a measure of Kurtosis, Pearson introduced B, and y, which aq

[32=E4_=.£2_
By (W)
72= Bz— 3

If B,= 3 or y, = 0 then it is mesokurtic (normal)
IfB,>3 ory, >0, then it is leptokurtic.
If B, <3 ory, <0, then it is platykurtic.




hat if
Ved. 9
ution o Leptolartc (B, > 3)
e hav M@okurtic (B,= 0) Normal
3 Platykurtic (8, < 3)
nCIde) / \—
! ' .

Mean = Median = Mode

ather (I 1.12 Computation of Moments for grouped frequency distribution:

fthe | In computing the moments about any arbitrary value as well as the

MCSS r central moments for a grouped frequency distribution, the calculations
P can be simplified by changing the scale. - :

pans Thus, for a grouped (continuous) frequency distribution rth moment
: “f: ‘gbout any arbitrary constant 'a' is given by,
L4

1
'=—2f(x,—2)
ul‘ N l(xl )

Now if the scale is changed, by introducing a new variable,

1 h"
=—Zf(hd,) =—Zfd/
Hy N3 ( ) ey

Similarly, the scale may be changed while computing the central
moments, we have

1 1

—_ - —Zf(h
Wy =N u) < Z fi(hu,)’

h Zfu [Puttmgu ————-;E]

TN h
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1.13 Sheppard’s Connection for Moments :

In case of grouped or continuous frequency distribution, for th
calculation of moments, the value of the variable X is taken as the mi
point of the corresponding class. This is based on the assumption that
frequencies are ¢oncenirated at the mid points of the correspondin
classes. This assumption is approximately true for distributions which
symmetrical or moderately skewed and for which the class intervals are’ |
not greater than one-twentieth of the range of the distribution. However} |

moments. W.E. Sheppard proved that if|
(1) The frequency distribution is continuous and .
(2) The frequency tappers off to zero in both directions the effect!

due to grouping at the mid point of the intervals can be corrected by the
following formula, known as Sheppard’s correction,

2
B, (corrected) = p, — b
12
M (corrected) = p,
corrected - h2 — h4
p, (corrected) = p, b ¥ oS
where, ‘h’ is the width of the class interval. The above corrections

1
are valid only for symmetrical or slightly assymmetrical distributions, |
Moreover, as a safeguard against sampling errors, these should be g
perfectly applied only if the total frequency is fairly large, say greater than d
1060. i

1.14 Solved Examples :
Example 1. The first four moments of a distribution about the value 4
of the variable are —1.5, 17, —30 and 108. Find the moments about
mean, 3, and B,. Find also the moments about (i) origin (ii) the point x
=2. - [GU. (MA/MSc) *00]
Solution :

Given,a=4

py ==15u; =17, 43 =-30,pu; =108

The first four moments about mean are—

My =0

By =pi—p =17-(=15)* =14.75

By = s =3t +2p% = —30-3x17(-L5) +2(-15)° =39.75
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B e ¥R

TR TR TR Th +6P'z|41 _3Px
=108 —4(—30)(~15)+6>< 17(-15)* -3(-15)* = 14231

B, B (3975)
u, 14231
=24 - 7= __ 0654
P2 pl o (14.75)
(i) We have,
p=p-a

= -15=pu—4 [since a=4]
=S un=25 (which is the mean of the distribution)
when a = 0 (i.e. origin),

# =p=25
=, = 1875 =, — (25 > p, =21
ﬁbw, = 3p2p,+2p{’
| =>39.75=p,-(3x21x25)+2(25)’=>p;=166
Again = p, —4psp + 6o’ =3’
= 14231 =p/, — (4 x 166 x 2.5) + (6 x 21x 2.5%) —3(25)*

= p! =113199
(ii) We have, a=2
LH=p-a=25-2=05
by = pd = 1475=p3 ~(05) = p; =15

Py = pd = 3pipt + 2 = 39.75=p} —(3x15% 05)+2(05)°
= py =62

Mo =3 —4pss + 63y —3u)

= 14231 =’ - (4 x 62 x 0.5) + (6 x 15) x (05)* — 3 x(0.5)"

=, =24399
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Example 2. If the first, second and third raw moments are 2.5, 30 anfe
286 respectively, then what is the third central moment? e
[GU. (MA/MSc)Prev 00
Selution : Given, 0-

p=25 pu,=30, p\ =286

Sy = = 3pipd +2p) =286-3x30x25+2x(25)°
=92.25

Cxample 3. The first four moments of a distribution about a = 2 are |, k.

2.5,5.5 and 16. Calculate the first four moments about the origin. ,

[GU. (MA/MSc) "03]y

Selution : i

Given,a =2
mr =1 pn;=25, g§=55, py =16.
Wehave, pl=p-a=l=p-2 =u=3

B=pi—put =25-12=15

By = p5 =3 +2p) =55-(3x25x1)+2x1°=0
TR TR ITHTHE TLTL T
=16-(4x55x1)+(6x25x1*)~3x1* =12
The first four moments about origin,
P:=P=3 |

My=ph—p! = ph =15+3 =105

By =H5 = 3ugn] +2p; => ) =405
2 4
Pe = By =i + 6y =3y

Mo =My —4%x405%x3+6x105x3* -3x3*

i &L

=>p, =174

Example 4. On the basis of the following data calculate the first
four moments about the value 15, about mean and also B, and B,
‘Cl: 0-10 1020 20-30 3040
£ i 3 4 2
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0 |f Midvalied=""— @ | f& | @ | &
|

0-10 | 1| 5 > -1 1 -1 [
10-20] 3| 15 0 0 0 0 0
20-30] 4| 25 1 4 4 4 4
30-40| 2| 35 2 4 8 16 32
f Ne10) 2fd=7 2fd* =19

i =13 Tfdt = 37

We have

~pu=h

p;-:h’ﬁl—zfdz:loz-lldxw—-lm

1
*=h"—Zfd"
K, N

€
N

zfd =10—1-x7=7
10

p;=h’-l—zfd’=1o3—1-x19=19oo
N 10

Wy = h‘%):fd‘ =10 TIGX 37 = 37000

o =pi—pd =130-7*=81

where h=10,a= 15

=t —3pipt +2p7 =1900-3x130x 7 +2x7* = ~144

e = 5 = 3pius + 6t — 3y
— 37000~ 4x1900x 7+ 6x 130x 7> ~3x 7* = 14817

2
e ) T, T
e (81
By 37000
e A )
’B T ET
B,
distribution.

B, =2.2 <3, Hence the given distribution is platykurtic.

Example 5. The first four moments of a series about the value 5 are 1,
5,10 and 50 respectively. Obtain the various characteristics of the
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. distribution on the basis of the information given. Comment upon
nature of the distribution. [GU(MA/MSc)’

Solution : Given, '
a=3, pr=Lu;=5p3=10,p; =50
We have, p! =p-a=>l=p-5=>p=6
[ a® 2
Bo=H =P =5-1"=4
By =R =3t +2pY =10-3x5x1+2x1=-3
a a  a a 82 : l‘
Mg = W —4p30 +6pp1) —3p
=50-4x10x1+6x5%x12—3x1* =37

R e

py 4 |
By 37
Br=—F ==5=231
ST
Again,
oy =3 v e -
Y'—c3_23<0 [ o —p2m4:>o'—2]

Since y, <0, the distribution is negatively skewed. Again p, <
Hence the given distribution is platykurtic.

Example 6. Arithmetic mean of a certain distribution is 5. The seco
and third moments about the mean are 20 and 140 respectively. Find t

second and third moments about 10. [GU.(MA/MSc) ’(
Solution :

Given, p =5, p, = 20, p, = 140

We have,

pr=p—a=510=-5
My =py—pf =20=pi— (=5’ > p;=45
py = pd = 3pipt +2p = 140= p} = 3x45% (=5) + 2(=5)°

= ny =-285

50




] CHECK YOUR PROGRESS

1. .In the theory of central moment show that

T Tl O T T O THN T S VT

L1 [GUMA/MSc) Prev *99]
B12.  The first three moments of a distribution about the value 2 are 1,

ond
1 the
'06]

{ 16, —40. Find mean and variance.
\ [GU(MA/MSc) Prev *99]
!

{3. Express the moments aboutany arbitrary constant ‘a’ in terms of
moments about the mean. [GU(MA/MSc) Prev '02]
14. Show that the central moments are invariant to the change of origin

| but not of scale.
| Calculate the value of B, and B, from the following data and
comment on the result.
Marks : 20-30 3040 40-50 50-60 60-70 70-80 8050
- No. of
students : 4 7 10 20 4 3 2
. " [GUMMA/MSc) Prev *01]
{5, Define moments. Derive the relationship between moments about

the mean and the moments about the origin. Hence express the first
four central moments in terms of the moments about the origin.

115 Summing Up :

Probability is the measure of likelihood of occurrances of chance
events. Probability gives a quantitative measure of the chance of a random
- experiment. There are 3 approaches to probability viz. classical approach,
empmcal approach and axiomatic approach.

Conditional probability is the probability attached to events which
are such that one of them occurs only when the other is known to have
occurred.

Events are said to be independent of each other if happening of
any one of them is not affected by and does not affect the happening of
‘any one of the other.

A random variable is a numerical valued function defined on a
“sample space. The probability function of a discrete random variable is
known s the “probability mass function” and that ofa continuous random
variable is known as the ‘probability density functions’.

- Mathematical expectation is the summation of the products of the
various values that'a random variable may take and their respective

lpl'ObabﬂthS
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distributions like central tendency, variation, skewness and kurtosis

symmetrical, it is called a skewed distribution. Kurtosis enables us
have an idea about the shape and nature of the hump (middle part) o

frequency distribution.

1.16 References and Suggested Readings :
1.

r

Moment describes the various characteristics of a frequen

Skewness refers to lack of symmetry i.c., when a distribution 1s

Gupta, S.C. and Kapoor, UK., “Fundamentals of Mathemati
Statistics.” ‘

Gupta, S.C. and Kapoor, VK. “Fundamentals of Appli
Statistics.”

Gupta, S.C., “Fundamentals of Statistics.”

Agarwal, D.R., “Business Statistics.”

Hazarika, P, “Essential Statistics for Economics and Commerce!
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Unit 2 : Standard Probability Distribution

) § Contents
$21 Introduction
22 Objectives

23 Binomial Distribution
94 Assumptions of Binomial Distribution
125 Properties of Binomial Distribution .

26 Solved Examples

27 Poisson Distribution

28 Properties of Poisson Distribution
29  Solved Examples
1210 Normal Distribution

§ 211 Properties of Normal Distribution

212 Tmportance of Normal Distribution

2.13 Standard Normal Varniate
214 Area Under Standard Normal Curve

2,15 Solved Examples

916 Relation between Binomial and Normal Distribution
717 Relation between Poisson and Normal Distribution
2.18 Moment Generating Functions

219 Central Limit Theorem

2.20 Summing Up

221 References and Suggested Readings

2.1 Introduction :

The distributions which are derived mathematically based on certain
assumptions are called Theoretical Distributions Or ‘Expected
Destributions or Probability Distributions. A probability distribution
whose underlying variable is discrete is called a discrete probability
distribution; on the other hand, a probability distribution is called a
continuous probability distribution if its underlying random variable is 2
continuous one. Here we shall discuss three important probability
Jistribution viz Binomial distribution, Poisson distribution and Normal
distribution. The first two are discrete probability distribution and the
third is a continuous probability distribution. In the Unit-1 you have
already read about the discrete and continuous random variables. In this
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unit you will learn some more about their pattern of distribution.

2.2 Objectives :
This unit is designed to help you understand the standard probabilif
distributions. After reading this unit you will be able to, ;
1. Distinguish between the pattern of probability in case of small an|
large samples. \
2. Depending on the normal distribution predict the characterstic d
a sample for the total relevant population. ‘

3. Calculate various probabilistic situations through binomial
poisson and normal distributions. 1

4. Define moment generating function and the central limit theory,

2.3 Binomial Distribution (or Bernoulli Distribution) :

Binomial distribution, which is also known as the ‘Bernoull
distribution’ is the most fundamental and important discrete probabilit]
distribution in statistics and is defined by the probability function—

P(X) = °C p*q™%; X=0,1,2 ... , 1 —(1)

which gives the probability of X successes in a series of 1
independent trials (x < n) wheré p is the constant probability of succes|
in a single trial and q = 1 — p:

2.4 Assumpfions of Binomial Distribution :
Bimomial distribution is based on the following assumptions :

(i) An experiment is performed under identical conditions for a finite
and fixed number of trials (n).

(i) Each trial must result in two mutually exclusive outcomes -
success or failure.

(1i1) In binomial distribution, the outcome of any trial does not affec
the outcomes of the subsequent trials. Hence trials are independent.

(iv) In each trial, the probability of success p remains constant.

For given n and p, the above ﬁmctlon p(x) represents the following
discrete probability distribution.

X 0 1 2 o b n
pX) | q° "Cp'q* 0% ' L P, p°
The probability of 0 success, 1 success, 2 successes, ... n

successes are respectively the 1st, 2nd, 3rd, ....., (n + 1) th terms of the
Binomial expansion. (q # p)* = ¢° + ”Clp‘q"“‘ +H0 P, Y
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This is' why the probability function (i) is called a Binomial

Probability Distribution.

25 Properties of Binomial Distribution :

(1) n and p are called the parameters of the Binomial distribution.

The binomial distribution is completely known when the values of n and
pare known.

(2) Binomial distribution is a discrete probablhty distribution in which

the random variable X (the number of success) assumes the values 0, 1,
2, ..., n where n is finite.

(3) The sum of all the probabilities of successess is unity i.e.
PO) + P(1) + P2) +....c +P(n) =1
(4) The mean or expected value of the binomial distribution is np,
Standard deviation is \/npq ,

Variance is npq -

—n)2
B, _(g-p)
npq
Bz :3+t_m
npq

(5) The mode of binomial distribution is that value of the random
variable X which occurs with the largest probability. It may have either
one or two modes.

(6) If two independent random variables X and Y follow binomial
distribution with parameters (n, p) and (n,, p) respectively, their sum
(X+Y) also follows binomial distribution with parameters (n, +n, p).

(7) The binomial distribution is & theoreucal distribution rather than,
an observed frequency distribution.

(8) The shape of a binomial distribution depends on the values of

' p; q and n.

(9) The binomial distribution can be presented graphically by means
ofa line graph. The number of successes (x) is taken on X axis and the
probability of successes on the Y axis.
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STOP TO CONSIDER
(1) If n independent trials are repeated N times, we get N sets ofn
trials and the expected frequency of X successes is N."C p*q™™.
The expected frequencies of 0, 1, 2, ..., n successes are the
successive terms of binomial expansion of N(q + p)*
(2) The parameter(s) of a distribution (is) are the quantity (quantities)
which, when known, the distribution is completely known.

2.6 Solved Examples :
Example 1. Show that in Binomial distribution Mean > Variance.
Solution :

Let, X ~B (n, p)
Wehave, p+q=1
L

= npq < np (multiplying both sides by np)
=> Variance < Mean
=> Mean > Variance.

Example 2. Bring out fallacy, if any, in the statement, “The mean of th

Binomial distribution is § and standard deviation is 3.”
[GU.(MA/MSc)Prev. *96]
Selution :
According to the statment,
111 Eon gl SRR (1)
0pg =3 .o (i1)
3111 G S (1i1)
Now,
(1) + (i) = L.
q 9
g
* 5
Here q > 1

.. The given statement is incorrect. |

Example 3. X is a random variable following the probability lay
P(X=X)="CP{l-p)"*where0<p<1landx= 0, 1, ..., n. If meat
of X is 5, variance of X is 4. Find the value ofn. [GU.(MA/MSc)’99
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5 Let, X ~ B (n, p) ,
Given, Mean = np = 5, Variance = npq = 4
Z .opq _4
",np 5
)
= 4 =% --l—f-—l
= 8- 5. TRTRTE T

Again, np =5
[ ;nys=5 :n=5x5v = 25

Example 4. Suppose, X is a random variable following the Binomiat
probability law. If the mean of X is 5, the variance of X cannot be larger
than 5. Explain why it is so? [GU.(MA/MSc.)00]
Solution :

. Let, X~ B (n, p)

~ Given, Mean=np =5

- Variance = npq = 6 (say i.e. larger than 5)

he

' %

6] Tmp 5
=>q=12>1

which is impossible. Hence the variance cannot be larger than 3.
Example 5. The mean of binomial distribution is 20 and standard
gviation is 4, calculate n, p and q. [GU.(MA/MSc)02]
Solution : ~

Given, Mean (np) = 20

Variance (npq) = 4*= 16

-opg 16 »

| np 0> 4= 08=>p=1-038 =0.2

Again, np = 20 = n(0.2) = 20 = n = 100

m mple 6. In a biochemical experimient 20 insects were put into cach
of 100 jars and were subjected to fumigant. After 3 hours the number of
jing insects in each jar was counted and the results were as follows :

No. of insects alive : [0 |1 |2 [3 |4 |5 |6 |7 |8 |9
“.ofjars: 3 (8 [11]15]16 14 [12{11]9 |1
] Wita binomial distribution to the above data.[GU.(MA/MSc)'04]
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Solution : _
Let, X denotes the number of insects alive in a jar.
and again, Let, X ~B (n, p)
Given,
n =20, N = 100
X | Observed fx P(x) Expecj
Frequency (f) freques
0 3 0 | 2C(22)° (.78)®=.006 | 0.6=
1 8 8 | ®C(22)'(78)*=.039 | 39=
2 11 22 | ®C(22) (.78)"® = .105 | 10.5 =
3 15 45 | BC(22) (78)" =.178 | 17.8 =
4 16 64 | PC(22)* (.78)' = 213 | 21.3 =]
5 14 70 | ®C(22)° (.78) =:192 | 19.2 =
6| 12 72 | 2C(22) (.78)" = .136 | 13.6 =
7 11 77| BC(22)" (78)" =076 | 7.6 =
8 9 72 | C(22)* (78)2=.035 | 3.5=
9 9 | mC (227 (78)" =013 | 13=
N=100 Xfx=439 |

In binomial distribution Mean =np
=>439=20p =>p=22 =q=.78
X = 1) = NG

= AC(22) (.718)*~

Example 7. A multiple choice test consists of 8 questions with 3 answ
to each questions of which only one is correct. A student answers ¢z
question by rolling a balanced die. He gives a tick mark to the fi
answer if he gets 1 or 2, the second answer if he gets 3 or 4 and |
third answer if he gets 5 or 6. To get a distinction the student must sec|
at least 75% correct answer. If there is no negative marking what is |
probability that the student secure a distinction. [GU. (MA/MSc)'(

Solution :
Let X denotes the number of correct answers.
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Now, 75% correct answers out of 8 questions is,
8 x 0.75 = 6.

B PX =1)="C pqQ"”

=8C,(-l—j (—%J ; r=0%....8
6 B Ve

>6) =P(X =6) + P(X = 7) + P(X = §)

= (J4) Ga) +e:(34) (4) +e(14) C4)
=0.0187
. The student has 0.0187 probability to secure a distinction.

CHECK YOUR PROGRESS

‘1‘ What is a binomial distribution? What are its mean and standard
; deviation? A coin is tossed 4 times. What is the probability of obtaining
2 or more heads? [GU.(MA/MSc)Prev '06]

w What is binomial distribution? What are its properties?

i [GU.(MA/MSc)Prev *07]

$13. A student obtained the following result. Is the result consistent? For

WETS
each
first
d the

S th
'06]

; abmonnal distribution mean =4 variance = 6.

[GU.(MA/MSc) *97]

|4. For a binomial distribution the mean is 4 and variance is 2. Find
[ the probability of getting (i) at least 2 successes (i1) at most 2
| successes.

15. In a binomial distribution consisting of S independent trials the
| probability of 1 and 2 successes are 0.4096 and 0.2048 respectively.
{Find the parameter P of the distribution and also obtain mode and
| variance.

16, 6 dice are thrown 729 times. How many times of you cxpect at
lleast 3 dice shows a 5 or 62

' 7 If on an average one ship in every 10 sinks, find the probability
i that out of 5 ships, at least 4 will arive safely.

', . The mean of a binomial distribution is 20 and standard deviation
3 ls4 Find out the characteristics of the distribution.

~9 For a Binomial variate X the mean = 4 and vaniance = 3, find
|P(X = a non zero value).
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Let us understand, Binomial Theorem :
P(n, k, p) means
e Probability of k successes in n trials where the probability
of success on any one trial is p.
e k specified outcomes.
e n trials
e p probability of the specified outcome in one trial.

2.7 Poisson Distribution :

Simon D Poisson (1781-1840) had developed the Pois
distribution as a limiting case of Binomial probability distribution under
following conditions.

(i) n, the number of trials is indefinitely large i.e. n —> oo

(ii) p, the constant probability of success for each trial is indefinit
Small i.e.p > 0 :

(iii) np = m (say) is finite. -

Under the above three conditions the Binomial probability functi
tends to the probability function of the Poisson distribution given belo

-m T

By

p() =P(X =1) = ﬂm E=0,1,2,3, .

Poisson distribution can be used to explain the behaviour of the dis
random variables such that the probability of occurance of the cvent§
very small and the total number of possible cases is sufficiently large!

2.8 Properties of Poisson Distribution :

1. Poisson distribution is a discrete probability distribution since
variable X can take only integral values 1.e. 0, 1, 2, ... .

2. The sum of all probabilities of successes is unity i.e. tof
probability is one.

2 3

a
- - -— m — -
ZP(r)=e"+me " +—e " +—e"" +...
r=0 21 31
2 3
m‘° m
=g "‘[hm+—-—-+——— }
2V w31
2 3
X = fo
e ™ x el e*=1+x+4 SF T

—e~mm=¢% =] [by law of indices)
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Poisson Probabilities

No. of Successes Probability
T P(r)
—-m 0
e ".m i
0 0! =e
i e ".m
1
e ™. m’
€ 2!
e xm
3 3!

(3) ‘m’ is the only parameter of the Poisson distribution. Hence, if
*we know the value of m, all the probabilities of the Poisson distribution
 can be obtained. .
B (4) The mean or expected value of poisson distribution is ‘m’,
 standard deviation =,/ .

.. Variance=m

A
m

B, =

1
By =3+ =

5.1f X and Y are two independent poisson variable with parameters
m, and m, respectively, then their sum X + Y is also a poisson with

parameters m, + m.,.

6. It is limiting form of the binomial distribution.

7. Mode in the poisson distribution can be obtained under the
following two cases.
Case L: When m is not an integer

Let, m = k + f where k is the integer and fis the fractional value
je. 0<f< 1. :

In this case, the mode of the poisson distribution is k.
Case II : When m is an integer.

Let, m = k where k is the integer value.

In this case you will get 2 values of mode i.e. k and k— 1.
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STOP TO CONSIDER
Role/Uses/Importance of Poisson Distributions :

1. Itis used in quality control statistics to count the number of
defects of an item.

2. In biology to count the number of bacteria.

3. In physics to count the number of particles emitted from a radio-
active substance. :

4. In insurance problems to count the number of causalities.

5. In a waiting time problems to count the number of incoming phone
calls or incoming customers.

6. Number of traffic arrivals such as trucks at terminals, acroplanes
at airports, ships at docks, and so forth.

7. In determining the number of death in a district in a given period

say, a year, by a rare disease.

8. The number of typographical errors per page in typed material,
number of deaths as a result of road accidents.

9. In problems dealing with the imspection of manufactured products
with the probability that any one piece is defective, is very small
and the lots are very large.

10. To model the distribution of the number of persons joining a que

(a line) to receive a service or purchase of a product etc.

2.9 Solved Examples :

Example 1. A manufacturer of copper pins knows that 2% of his
product is defective. If he sells copper pins in boxes of 200 and
guarantees that not more than 5 pins will be defective. What is the
probability that a box will fail to meet the guranteed quality?

(Given e* = 0.0183) [GU.(MA/MSc)Prev’98]
Solution :

Let X denotes the number of defective cop;ﬁcr pins in a box.

We assume that, X follows a poisson distribution with mean, m =
np =200 x 0.02 =4 :

Then,

P(X)=E r"m;  r=0,1,2,.....

e 4"
a1

The box will fail to meet the guaranteed quality if the number of
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‘defective items in the box exceeds 5.

‘Now,
P(X 2 5)=1-[P0)+P(l) +P(2) + P(3) + P(4) + P(5)]
= 1—00183[l+4+8+2+£+-1—2-8—]
> 3 3 15

=0.2155. :

‘Example 2. What probability model is appropriate to describe a
c situation where 100 misprints are distributed randomly throught the 100
pages of a book ? For this model what is the probability that a page is
' taken at random will contain,

(i) At most two misprints.

(ii) At least 3 misprints. [GU(MA/MSc)*00]
Solution : ‘ ~

The given problem can be suitably described by the Poisson
3 - distribution. : ;

Let, X denotes the number of misprint in a page.

Let, X ~ P(m)
- Given,

number of misprints in 100 pages = 100

: SIS 100
Number of misprints in 1 pag _ﬁ"

Average number of misprint =m = 1

r!
| (i) The probability that at most two misprints are there,
] PX<2)=PX=0+PX=1)+PX=2)
e—l 10 e—l ll e-l 11

L

0! 1! 21

P(X=Y)=

=e"(l+l+%)= 0.92

3
(i) The required probability that at least 3 misprints are there is,

P(X 2 3) = P(X = 3) + P(X =4) + P(X = 5 + ..
—1—[P(X=0)+P(X = 1) + PX =2) + P(X = 3)]
e B b 5 PO i X o b s e

0! 1! 2! 3!
1 — {0.368 x 2.667} = 0.02
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Example 3. A car hire firm has 2 cars which it hires out day by da
The number of demand for a car on each day is distributed as a poi
vasiate with mean 1.5. Calculate the proportion of days on which.

(1) Neither car is used.

(i) Some demand is refused. [GU. (M.A./MSc)’
Solution:

Let, X denotes the number of demand for the two cars in a day

Let, X ~ P(m)

Given,m=1.5

-m T

AP(X=r)=E "m t=0,1,2,.....
T! .

e’ 15
r!
(#) Required probability,
e P 15°
0!
(ii) Required probability,
PX>2) =PX=3)+P(X=4)+P(X=5)+ ...
=1-PX=0)-PX=1)-PX=2)
e, 15" e™.15 %147
o0 1 2
=1~e!S(1+1.5+1.125) = 0.192

P(X=0)= =02231

Ak

Example 4. If X is a poisson variate such that
P(X =2) =9 P(X = 4) + 90 P(X = 6)
Find (i) Mean and standard deviation
] (i) CoefFecient of skewness and Kurtosis. [G.U. (MA/MSc)’01 ]
Solution : Let, X ~ P(m) ,
P(x=2’)=9p(x=4)+9o P(X = 6)

-m . 2 -m 4 -m _6
e .m _gf.m +90S M0
2! 4! 6!
3m® mt et : c-m.mz'
=1= + — dividing both sides by
4 4 2:)
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day. =m'+3m’-4=0=>m'+4m*-m*-4=0

g = m’ (m2+4)—1(m2+4)=0
::>(m2+4)(m2-1)=0
00] 2 2
=>m +4=0 Or m f1=0
Ay C >m’=-4 =m’=1

- Which is impossible} = m=+1
~m=1¢-m>0)
~ () Mean=m=1, Variance =m =1

Standard Deviation = yfm =1

1 1
(i) Coeffecient of Skewness (B,) = —r;l- = 7 =1

1
Coeffecient of Kurtosis (B,) = 3+;1-= 3+1=4

le 5. If X and Y are independent poisson distribution such that
PX=1)=PX =2)and P(Y =2) =P(Y =3).
Find Var (X - 2Y).
[GU. (MA/MSc) 04]
Selution :Let, X ~ P(m) and Y ~ P(A) '
i BT

SP(X=1)=2 ,]m andP(Y:r):-—r-l—;r—_-o,l,z,...

ey, PX=1)=PX=2);| PY=2)=P(Y=3).
e™.m e .m erat e

— = - —_— =
1! 21! 2! 3!
m A

=>]l=— =]l=— -

1] 2 3
>m=2 =>A=3

it (X =2) and Var (Y = 3)
it (X — 2Y) = E((X ~ 2Y) - E(X - 2Y)
= E[X - 2Y - E(X) + 2E(V)P
| - =E[{X - EX)} - 2{Y - E(Y)} :
! - =E[{X - EX)} + 4{Y - E(V)}* - 4{X - EX)}H{Y - E(Y)}]
=E[X - E(X)) + 4 E[Y - E(Y)]* - 4 E[{X - EX)}{Y — E(Y)}]
= Var (X) + 4 Var (Y) -4 Cov (X, Y)
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=2+(@4x3)-(4x0)
(-- Cov (X, Y) =0 When X and Y are independent

=14
Example 6. If X is a poisson variate and P(X =0)=P(X = 1) =k
Find the value of k. [GUMA/MSC)’5]

Solution : Let, X ~ P(m)

-m |8

.m

P(X=0)=2 120125

Given, PX=0)=PX=1)=k

- 0 : -m
€y e .m :
— = —3 k E=3 ] —3
o T = l=m=k=k=1
Let us understand,

The equality of mean and variance is an important
characterstic of the Poisson distribution, whereas for the binomial
distribution the mean is always greater than the variance.

CHECK YOUR PROGRESS

1. Distinguish between Binomial and Poisson probability distributions.
Give their characteristics with examples. [GU.(MA/MSc)Prev *09]

2. Define Poisson distribution. What are its properties?

[GU.(MA/MSc)Prev "09]

3. It has been observed that average number of suicides per week in
Delhi in 1.5. If X denotes the number of suicide cases in a month,
find P(X = 5). [GU.(MA/MSc)Prev *96]

4. Ina Poisson distribution the probabiﬁty P(x) for x =0 1is 10% find
(i) The mean of the distribution [GU.(MA/MSc)Prev '97]
(ii) The mode of the distribution
(iii) The coeffecient of skewness and Kurtosis.

5. If the probability that an individual suffer a bad reaction froma
particular injection is 0.001. Detenmne the probability that out of
2000 individuals,

(a) Exactly 3, (ii) More than 2 (iii) Atleast 3 individuals will suffer
from a bad reaction.

6. The variance of a poisson distribution is 4. Find the probablhty that

~ X =3 (Given e = 0.0183).

7. If2% of electric bulbs manufactured by a certain company are

defective, find the probability that in sample of 200 bulbs (i) less;
than 2 bulbs (ii) more than 3 bulbs are defective (Given e™ =
0.0183).




2.10 Normal Distribution :

. Normal distribution is a continuous probability distribution. A
tontinuous distribution is one in which the underlying variable X (say)
may assume any value within a given range. A continuous variable is
usually represented by a smooth, bell shaped curve which is perfectly

ent

5] f‘_;m etric. There are many continuous distributions of which the most
commonly used distribution is normal distribution.
" The normal distribution was first discovered by De-Moivre (1667-
754) in 1733. Normal distribution is also known as Gaussian
distribution (Gaussian Law of Errors) after Karl Friedrich Gauss (1777-
1855) who used his distribution to describe the theory of accidental
ermors of measurements involved in the calculation of orbits of heavenly
bodies.
t
1
1 —PE)
]
’w] [
1|
kin. ! Mean = p
;;21]’ ’ Normal Curve
. Ifx is a continuous random variable following Normal probability
' distribution with mean p and standard deviation o, then its probability
97] density function (p.d.f) is given by,
| 8 L) |
P(X) = e —o<X<wo .0
A a PO =— (@
lt of |
f o e
‘ = P(X) = e 29% . —0< X <o
_nﬁ'er\ f i oV2n
! | ,
that B yhere, = -2;2— , V271 = 25066
!-érc; ¢ = 2.71828
less |

Note : I f{x)dx gives the probability that the value of X lies between
1 8
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a and b. This is equal to the area under the normal curve between
two ordinates at X = a and X = b on the x axis. The total area unt
the normal curve is unity

b o

P@<X<b)= _[ fix)dx and I fix)dx = 1 !
2.11. Properties of Normal Distribution : I,

(1) Normal distribution is a continuous probability distribution haviit:
two parameters i.e. mean p and standard deviation o.

(2) The graph of p(x) is the famous bell shaped curve with top|
the bell directly above mean ().

(3) The distribution is symmetrical about the line x = p and two taj
of the curve on both sides of x = p extends to infinity.

(4) Since the distribution is symmetrical, mean, median and mod
coincide. Thus, .

Meéan = Median = Mode = p.

(5) Moment coeffecient of skewness is B, =0,v,=0 coeffecien l
of Kurtosis B,= 0. '

(6) The first and third quartiles are equidistant from the median.

(7 (i) The area under the normal probability curve between th

ordinates at x = L — g and X = 1 + ¢ 18 68.27% of the total area unde
the curve. Since the total area is unity, therefore, the area = 0.6827.

(i1) The area under the normal probability curve between thés
ordinates at x = p — 2o and X = p + 26 is 95.45%.

(iii) The area under the normal probability curve between the
ordinates at x = pu — 3¢ and x = L+ 3018 99.73% of the total area unde
the curve. This area is 0.9973.

2.12 Importance of Normal Distribution :

Normal probability distribution or commonly called the no
distribution is one of the most important continuous theoretica
distribution of statistics. Most of the data relating to Economics and
Business Statistics or even in social and physical sciences conform to this
distribution. It has been found that :

(1) Data obtained from Psychological, Physical and Biologicall
measurements approximately follow Normal distributions.

(2) Distributions like Binomial, Poisson etc can be approximated to
Normal distribution.

(3) Normal curve is used to find confidence limits of the population
parameters.

(4) Normal distribution is largely applied in statistical quality control
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i industry for finding control limits.

(5) The theory of errors of observations in physical measurements

are based on normal distribution.

STOP TO CONSIDER
1. The sum as well as difference of independent normal variates

| is also normal variate.

2. The means and standard deviations of two or more normal
distributions are independent of each other. For two normal curves, it
is not necessary that a normal curve with larger (smaller) mean will also

‘have larger (smaller) standard deviaton.

You may get,
(i) The same means and different standard deviations.

X=pu

(i) The same standard deviation but different means.




(i1i) Different means and different standard deviations.

.

2.13 Standard Normal Variate (Variable) :

If X is a random variable following Normal distribution with mean
p and standard deviation o, then the normal variable Z defined as

follows,

D,
Z= —;ﬁ is called the Standard normal variate (S.N.V)

It can be shown that the SIN.V Z has mean 0 and standard

deviation 1.
Now,

Mean of Z = E(Z) = E=(x;”J

_}y_ E(X - 1) [ E(eX) = cE(X)]

~[E)-E(w)l= ~[w-kl=0

Q=

1
Var (Z) = Var (—oﬁ} — Var (X - )

[ - Var (cX) = ¢* Var (X)]

— Var(X)
(o)

: 1
Var(Z)=-c—2.cz=1

Standard Deviation = /] =1
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E . Here the p.d.f. of the SN.V Z is given by

¢(Z)=7—;—-7-[-e:2—, B )

[I'akmg x=Z, u="0and ois 1 in the equation of the normal curve (1]

STOP TO CONSIDER

(1) The area under the SNV curve between the two ordinates at
7= 0 and any positive value can be obtained from the table of area
under the standard normal curve. It is to be noted that

| (a) The area between the two ordinates at Z =0 and Z = a(>; 0)is
| sameastheareabetwecn'thetwoordinatcsatz=0andZ=—-aunder
the curve. - : :

(b) The area between the two ordinates at Z = a and Z=D0
(a, b > 0) is the same as the area between the two ordinates at

‘ Z=—aa’ndZ=-—bun'derthe curve.

(c) For solving any problem relating to Normal distribution, first of all,
the normal variable X is to be transformed to the standard normal
variable as follows :

g

where p and o are respectively the mean and standard deviation of the
normal variable X. The need for doing so is that different normal
distribution will have different means and standard deviations and
consequently the normal curves will be different in terms of mean
(average) and disperssion although Skewness and Kurtosis of all the
normal curves will be the same each being equal to zero. But in case
of standard normal curve, we get-the same curve, (with mean = 0,
S.D.= 1, Skewness = Kurtosis = 0). Corresponding to any normal
curve and the various areas under the standard normal curve between
the two ordinates at Z = 0 and any positive value has been calculated
with the help of integral calculus. These areas can be obtained from the
| table of area under standard normal curve.

| 2.14 Area Under Standard Normal Curve :

| A graph of the standard normal curve Y = P(Z) is shown in the

| figure below. The percentage distribution of the area under the curve is
also indicated in the figure. ; '
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X-30 X-20 X-l6 3 X+lo X+26 X+3c
S | { 1 [ 1
-3 -2 -1 0 +1 +2 +3
. > 68.27%
95.45% <— B
99.73% < ‘ >

Figure : Area under normal curve and standard normal curve

The following table gives the area under the normal probability curve
for some important values of standard normal variate Z.

Distance from the mean Ordinates | Area under the curve
in terms of + y |
Z=1%0.745 , 50% = 0.50
Z=4%1.00 68.26% = 0.6826
Z=1%196 95% = 0.95
Z=+20 95.44% = 0.9544
Z=+258 . 99% = 0.99 !
Z=1%3.0 99.73% = 0.9973 J
SELF-ASKING QUESTION
Try yourself to mention 3 real life examples where normal distribution
will be appropriate.

2.17 Solved Examples :

Example 1. The income of a group of 10,000 persons were found to
be normally distributed. The mean income Rs. 520 and a standard
deviation (S.D.) equal to Rs. 60.

(1) Find the number of persons having income between Rs. 400 and
Rs. 550.

(it) The lowest income of the richest 500.
[GU. (MA/MSc)Prev’94]
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'4;‘. ution :

{i)Let X denotes the income of a person
Let, X ~ N(u . )

Given p = 520, o = 60, N = 10,000

X—p _ 400-520

when X = 400, " 60
X—-p 550-520
— Z = = = 05
when X = 550, x 60

- P(400 <X <550)=P(-2 <Z <0.5)
; =P(-2<Z<0)+P0<Z<0.5)
=0.4772 + 0.1915
= (.5887
.. Number of persons having income between 400 and 550 is,
0.5887 x 10,000 = 5887.
(ii) Let, X, be the lowest income of the richest 500.

500

P(X, <X £ @)= Tog00 0O
N - :
Pwhen X=X, = Z==—=Z,...0)

' P(X, 2X 2 w)= 0.05
P = P(Z, <Z < ) =005
= 0.5 -P(0<Z<Z) =0.05
= P(0<Z<Z)=05-0.05=045
s 4= 1.65 '
X,~520 _
60
X, =619
.. The lowest income of richest 500 persons were Rs. 619.

1.65

From (1),

Example 2. Suppose the height of all cakes baked with a certain mix
tlosely follow a normal distribution with mean 5.3 centemetre and SD
0175 centemetre. (c.m).
" (i) Find the percentage of cakes which have height 0f 4.4 c.m or
- (ii) Number of such cakes in a lot of 800 cakes.
[GU.(MA/MSc)Prev.’97]
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Solution :
Let X denotes the height of a cake in c.m.
Let, X'~N (p , 0) | |
Given, p =5.3,0=0.75 , E

' X-n 44-53
] = Z= = ==12
(i) When X = 4.4, p 075 |

The percentage of cakes which have a height of 4.4 c.m or less w
be,
P(—0< X <44)=P(-0<Z<-12)
=05-P-12<Z<0)
= 0.5 - 0.3849
=0.1151
(ii) Number of cakes in a lot of 800 cakes will be,
0.1151 x 800 = 92.08 = 92 cakes.

Example 3. In a certain book the frequency distribution for the numb
of words per page may be taken as approximately normal with mean &
and S.D. 50. If 3 pages arc choosen at random, what is the probabilif§
that none of them has both 830 and 845 words each?

[GU. (MA/MSc) 0}

Solution : Let X denotes the number of words in a page.
Let, X ~N (i, ©)
Given, p = 800, o = 30

X-p _ 830-800 _ |

— — 0-6
when X = 830, Z 50
; X— 845-800
when X = 845, Z = —F = =09
5] 50

Now, P(830 < X < 845)=P(0.6 <Z < 0.9)
=P(0 <Z<09)—P0<Z<0.6)
=0.3159 - 0.2257
=0.0902
. Probability that none of them has between 830 and 845 worl
each is,
1 -0.0902 = 0.9098

Example 4. The income distribution of workers in a certain factory w
found to be normal with a mean of rupees 500 and a S5.D of Rs.
There were 228 persons getting above Rs. 600. How many perso
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s there in all? [GU.(MA/MSc)’03]
Solution : Let, X denotes the income in rupees of a worker.

Let, X ~N (1, o)

Given, p = 500, o = 50, N =

| X-p  600-500
| When X = 600, Z = — =~ =2
o 50

(600 <X < 0) =PR <Z < )
' =0.5-P(0 <Z<2)=05-04772= 0.0228

228
?—00228 = N = 10,000

Hence, thcre were 10,000 persons.

Example 5. A factory turns out an article by mass production method.
from past experience it appears that 20 articles on an average are
I ected out of every batch of 100. Find the S.D of the number of rejects
inabatch and write the equation of the normal curve which may be taken
represem the distribution of the number of rejects in a large series of
ches of 100. Hence, find the probability that the number of rejects in

‘;?;l: h exceeds 30. : : [G.U.(MA/MSc)’ 04]
Solution :

Let, X denotes the number of rejected articles in a batch.

ie. X ~N (u, o)

Given, P = TZOE-OZ n=100

SD = ,/opq =+/100x02x 08 =4 o=4
The equation of the normal curve is,
i ._l(w)
fx)=—p=e** * 7,
(x) 427
= X-p 30-20
vords@# When, X=30,Z= = 2
PB0 <X < ) =PRS5S<Z< )
- =05-P0O<Z<25)
y as = 0.5 — 0.4938= 0.0062

5. SO0 Hence the probability that the number of rejects is a batch cxceeds
SONSIE 30 is 0.0062.

—0< X<

=235
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CHECK YOUR PROGRESS

1. Draw a normal probability curve and describe its mal
characteristics. [GU.(MA/MSc)Prev ’05,’08]

2. What is meant by normal distribution? What are its properties.
[GU.(MA/MSc)Prev *07,’10]

3. 1000 students took an examinations. The mean marks obtain 15
and the standard deviation is 15. Find the number of studen
securing marks.

(i) Between 40 to 80 (ii) Exceeding 70
[GU.(MA/MSc)Prev *91]}

4. In a distribution exactly normal 7% of the items are under 32 an

85% are under 60. What are the mean and standard deviation of th¢

5. A setof examination marks is approximately normally distributed
with a mean of 75 and a standard deviation of 5. If the top 5% 0
the students get grade A and bottom 25% get grade F. What mar
is the lowest A and what mark is the highest F?
[GU.(MA/MSc)Prev *01]

2.16 Relation between Binomial and Normal Distribution :
Normal distribution is a limiting case of binomial probability

~ distribution under the following conditions

(i) n, the number of trials is indefinitely large ie n — o
(i1) Neither p nor q is very small.
. De-Moivere proved that under the above two conditions, the

distribution of standard binomial variate tends to the distribution of
standard normal variate.

2.17 Relation between Poisson and Normal distribution :

If X is a random variable following poisson distribution with
parameter m, then

E(X) = Me¢an = m and

Var (X) =o*=m
Thus, the standard poisson variate becomes
X—-E(x)
cx
_X-m
Jm

Hence, this variate tends to be standard normal variate if m — 0.
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iComparison study of Binomial, Poisson and Normal

|
hain |
: :
# f Properties Binomial Poisson Normal
, 1. Nature Discrete Discrete Continuous
s 55 -, .
ents. 2. Probability P(x) P(x) P(x)
_ m" 1 2‘(":" )
function = oC Pxq™* A i e e
* r! rv2n
Parameter n, p m | X(=p),0o
Ristrictions 0<p<l m >0 - XS
Limiting form n—>cow n— o
of distribution p—>0 p-q—=0
1

np = m (finite) p—>q—> 5

Mean and Mean¥np Mean = m Mean = pu

Variance Variance = npq | Variance = m | Variance = o?
§. Shape Symmetrical Positively Perfectly
' or Skewed Symmetrical
Assymmetrical
the
n of
- 2.18 Moment Generating Function :
The function E{e™ -} serves to generate moments of the
probability distribution of the variate about the point ‘a’ and is called the
vith moment generating function (m.g.f) about ‘a’. Itis writtenas M__ ()
Here t is some arbitrary parameter.
Thus,
. M,_, () = E[e®-9] = T~ p(x) ...... Q)
| This is for discrete probability distribution with P(x) = P(X = x).
E 3 For a continuous probability distribution having the density function
' f{x), the m.g.f. about some-constant ‘a’ is defined as,
l
| M, _, () =E[e*"]= [ ¢ fx)dx...... (ii
The summation of integration would extend to the entire range ofthe
variate values.
.

By putting a = 0, we shall get m.g.f. about zero. It will gcnerate
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moments about zero. Central moments m.g.f. about means is obtained by
substituting m in place of a.

We shall show below how a m.g f. generates moments for discrete
distributions. Similarly we can show it for a continuous distribution.

M, _, () = Ele®9] = e p(x)

=3 {H.t(x-a)+ t'(x—a)* +...t A meg)" +....}p(x)
x 2! r!

™

=X P(x)+tZ(x—a)p(x) + %E(x —a)’p(X)+....+

t—' Z(x-a)’ p(x)+.....
r!

2 r

= 1+ tB(x — 2) + -;—!E(x—a)z+ ..... + = E(x-a) +....
> : r!

- t
Or M(x_.)(t)=l+t}1:+?‘-p;+ ..... +r—p:+....

where p,: = E(X —a)" is the rth moment about the point x =a
From (i) and (ii) it is clear that,

M, , ®=E{e*" 9} e*M(t) =e™* x m.g.f about zero.
Thus, the m.g.f. about ‘a’ is equal to e times the m.g.f. about zero.

: STOP TO CONSIDER
Properties of M.G.F. :
(i) The m.g.f. of the sum of independent random variables is equal to
the product of their respective m.g.f.
Symbolically, if X, X, .... X_be n independent random variables then
the m.g.f. of their sum is given by,
ST t)= Mx] (t) x M_"2 (1) x st (1) x ..... X Mx,,(t)

(i) M_ () = M (ct), ¢ being a constant.

2.19 Central Limit Thebrem $

The central limit theorem may be stated as follows, “If 5 be the
mean of a random sample of size n drawn from a population having mean
p and standard deviation o, then the sampling distribution of the sample

mean ¥ Is approximately a normal distribution with mean p and
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standard deviation o/ Jn » provided the sample size n is sufficiently

g .1
ATe

The central limit theorem tells us that, irrespective of the shape of the
original distribution (i.e. whether the origin distribution is normal or not),
fhe sampling distribution of the sample mean approaches the shape ofa
normal curve as the sample size becomes larger and larger. However, if
{he original population is distributed normally, the sampling distribution of
the sample mean will also be normal whatever be the size of the sample.
Usually, a sample of 30 or more is considered as a ‘large sample’.
However, the larger the value of n, the better is the approximation.

- The above central limit theorem is, in fact, a deduction from the
following generalised central limit theorem :

- IEX X L, X are independent random variables following any
distribution, then under certain very conditions, their sum

IX=X, Xt

is asymptotically normally distributed i.e.

Y'X follows normal distribution as n = «.”

From the above generalised central limit theorem it has been proved
that the sampling distribution of most statistics like sample proportion (p),
difference of sample proportions (p, — p,), difference of sample means
(s, - 5,), difference of sample standard deviation etc are assymptotically
‘normal, and thus the standardised variates corresponding to any one of
these statistics is N(0, 1). Thus, if t is any statistic, then by central limit
theorem,
t—E(t)
Z= SE(t) ~ N(0, 1)

assymptotically as n — oo. This result is extensively used in Large
Sample Tests and also in constructing confidence limits for the population
parameters when samples are large.

2.20 Summing Up : |
Binomial distribution, also known as the ‘Bernoulli Distributions” is
 the most fundamental and important discreet probability distribution and
is defined ‘by the probability function P(x)="C p*q"” where
x=0,1,2,...n . It gives the probability of X success in a series of an

independent trials (x <n), when P is the probability of success in a
single trial and q = 1 - p. The binomial distribution is completely known
when the values of its two parameters, ‘n’ and ‘p’ are known. The mean
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of the binomial distribution is np and variance is npq, '

Poisson distribution is another discrete probability distribution and
is applied when the number of trials is indefinitely large and the probability
of success for each trial is indefinitely small. The Poisson distribution is
defined by the probability function '

e .m"

P(X=1)="—

r=0,1,223,...

Poisson distribution is completely known when we know the value
of its only parameter ‘m’. The mean of Poisson distribution is ‘m’ and the
variance is also ‘m’. :

Unlike binomial and Poisson distribution, normal distribution is a
continuous probability distribution. A continuous distribution is one in
which the underlying variable may assume any value within a range. The
normal curve is a bell-shaped symmetric curve. Since, the curve is
symmetric, hence, under normal distribution,

' mean = median = niode =

The function E{e“"")} serves to generate moments of the
probability distribution of the variable about the point ‘a’ and is called the
moment generating functions about ‘a’. It is written as M, _,, (t)

According to Central Limit Theorem; if ¥ is the mean of a random
sample of size n drawn from a population having mean p and standard
deviation o, then the sampling distribution of the sample mean % is
approximately a normal distribution with mean p and standard deviation

o /~/n provided the sample size n is sufficiently large.

2.21 References and Suggested Readings :
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4. Agarwal, D.R., “Business Statistics.”
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Unit 3 : Income Distribution
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31 Introduction :

The issue of income distribution has always been a central concern
ofeconomic theory and economic policy. Earlier, the classical economists
such as Adam Smith, Thomas Malthus and David Ricardo were mainly
toncerned with factor income distribution, which means the distribution
of income between the main factors of production i.c. land, labour,
gapital. While modern economists have also addressed this issue, they
havebeen more concerned with the distribution of income across
idividuals and households. Important theoretical and policy concerns
inchide the relationship between income inequality and economic growth.
For households and individuals income is the sum of all wages,
salaries, profits, interest payments, rents and other forms of earnings
teceived in a given period of time.

12 Objectives :
- This unit is designed to help you understand the pattem of income
distribution in the economy. After reading this unit you will be able to,

1. Describe income and income distribution.
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2. Distinguish between the absolute and relative measures of incos
distribution. '

3. Comment on the pattern of income distribution in the societyi
the world, country, state or in your locality.

4. Predict suitable distribution of income pattern in the economy

3.3 What is income :

Both of the above measures use income as the basis for evaluati
poverty. However, ‘income’ is here understood in difference to
common understanding. It means the total amount of goods and servi
that a person receives, and thus there is not necessarily money cas
involved. If a poor subsistence farmer grows his/her own grain it v
count as income. Services like public health and education are als
counted in. Often expenditure or consumption (which is the same in i
economic sense) is used to measure income.

The World Bank uses the so called living standard measuremes
surveys (LSMS) to measure income. These consists of questionnair
with over 200 questions. Surveys have been completed in mofs
developing countries.

3.4 Income distribution in selected countries :

(a) United States of America :

In the United States, income was distributed somewhat inequall
with those in the top two quintiles earning more tham the bottom 60%
combined. Yet, the distribution of income was not as polarised as in mar
developing countries with most of America’s eamned income resting in
hands of the middle class. The following table illustrates the incom$
distribution of the United States for 2005.

Table : 4.1 : Income Distribution in USA (2005)

| Income Range  Percentage of total income Cummulative
" earned by the income group Percentage of §
Total Income

Less than 25,000 6.76 6.76

$ 25,000 to $ 50,000 18.12 24.88
$ 50,000 to $ 75,000 22.54 47.42
$ 75,000 to $ 100,000 20.00 67.42

$ 150,000 or more 32.58 100.00
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ne W (b) India :
In India, the income distribution as per the results of survey
onducted in 1997 are tabulated below :

Table - 4.2 : Income Distribution in India (1997)

Income share held by Percentage of total income Cummulative
| * earned by the income group Percentage of
Total Income
Lowest 20% of the population 8.1 8.1
econd 20% 11.6 19.7
Third 20% 15.0 34.7
;_ourth 20% 19.3 : 54.0
Highest 20% 46.0 100.0 .

3 It may be noted that the income share enjoyed by the highest 10%
the population of India was found to be as much as 33.5%, while the
sorest 10% had to make do with a share of 3.5% only as per the above

;-u cY.

15 Pareto’s law of Income distribution :

" The Pareto distribution, named after the Italian economist Vilfredo
f}; eto, is a power law probability distribution found in a larger number
real-world situations. Outside the field of economics it is at times
eforred to as Bradford distribution.

" Pareto originally used this distribution to descnbe the allocation of
wealth among individuals since it seemed to show rather well the way that
'larger portion of the wealth of any socicty is owned by a smaller
percentage of the people in that society. This idea is sometimes
expressed more simply as the Pareto principle or the “80-20 rule” which
ys that 20% of the population owns 80% of the wealth.

This distribution is not limited to describing wealth or income
distribution, but to many situations in which an equilibrium is found in the
distribution of the ‘small’ to ‘large’. The following examples are
sometimes seen as approximately Pareto distributed.

® Frequencies of words in longer texts (a few words are used
often, lots of words are used infrequently).

@ The sizes of human settlements (few cities, many hamlets/
yilages).

e Filc size distribution of Internet traffic which uses the TCP
protocol (many smaller files, few larger ones).

@ The values of oil reserves in oil fields (a few large fields, many
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small fields).
@ The length distribution in jobs assigned supercomputers (a f
larger ones, many smaller ones).

The Pareto law of income distribution states that “The logarithm
the percentage of units with an income in excess of some value is
negatively sloped linear function of the logarithm of that value.

Symbolically, this takes the form,
log P(y) = logA-alogy

A
= P(y) = v where,

P(y) = Percentage of units with an income in excess of y.
Y = Income level.
| A, o= Parameters of the distribution. (a is called the Pareto Index),
It may be noted that inequality varies inversely with ‘a’, which is the
Pare to index.
The Pareto distribution is a cumulative distribution function. The
corresponding density function of this distribution is given by

a

Ya+|

As the income level approaches zero, the relative frequency p(0) in
the above formula approaches infinity. On the other hand, as income gets
larger and larger, the frequency falls towards zero.

The Pareto distribution is usually assumed to represent the
distribution of income at upper levels. In case of income distributions, it
does not fit into the distributions of low incomes well. In practice, those
income units below the income tax levels donot fit well under the purview

=P(y)=a

of the Pareto distribution.

3

2

1

¥

0
The X-axis of the adjacent graph represents the income levels, with
the initial income. y = 1 The percentage of units is represented on the

Y-axis. 'l
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STOP TO CONSIDER
The following points may be noted for the Pareto distribution,

1. In order to determine whether a body of economic data follows
the Pareto distribution, the data is to be plotted on a double logarithmic

Iscale. If the resulting scatter of points lies along a negatively inclined

straight line, it can be concluded that the data fits the Pareto distribution.

2. The Pareto distribution is a cumulative distribution. On the X-
axis, the income level is represented while the Y-axis represents the
percentage of units with an income in excess of Y.

3. If the scale used on X-axis and Y-axis are not logerithmic, the
Pareto distribution looks to as follows : :

3.6 Log-normal Distribution :

The log normal distribution is the probability distribution of any

random variable whose logarithm is normally distributed. Iy is a random
variable with a normal distribution, then e* has a Log-normal distribution.

A variable might be modeled as Log-normal if it can be thought of as the
multiplicative product of many small independent factors. A random
variable y is said to have the Lognormal distribution with parameters p

and o if In(y) has the normal distribution with mean p and standard

deviation ©. The log, normal distribution is used to model continuous
random questions when the destribution is believed to be skewed to the
right, such as certain income and lifetime variables. The probability
density function starts at zero, increases to its mode and decreases
thereafter.

Log-normal is also known as “log normal” or “lognormal.” It is
occasionally referred to as the Galton distribution or Galton’s distribution

after Francis Galton.

The base of the logarithmic furiction is immaterial since log y is
normally distributed if and only if log,y is normally distributed. It is

assumed that only positive values of random variable y are considered.

The log-normal distribution has the density function gwen by the

following formula.

1 & Thylogy-1)’
oV2n
for y (representing income) > 0.
Where p and G are the mean and standard deviation of y.
Further, since log y, — log y, = log (y,/¥,); the differences in the

 logerithmic scale are a function of the ratios on the arithmetic scaie.

To fit a log normal distribution to a body of data, we compute two
sample statistics viz the arithmatic mean and the standard deviation of the
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data. The estimated mean and variance of the data is given by the
following formulae.

1
estimated M = (EJ Z log }’i

estimated 6~ = (%) (= logy, — estimated )’

It may be noted that inequality varies directly with . Graphically, the
cumulative log-normal function when plotted on a logarithmic scale
should fall against a straight line.

STOP TO CONSIDER
Comments— Pareto and Log.normal distributions :

The Pareto and log-normal distributions are by and far, the most
usual descriptions of income distributions. There is a view that Pareto
distribution gives a better explanation at the upper tail, while log.normal
distributions is better suited for lower income values.

This is due to following reason. Towards the greater end of a
logarithmic table, given differences in arguments are associated with small
differences in logarithm. Thus, the log, ;1000 is 3, while the log, ;10000
is only 4. On the other hand, at the smaller énd, the same difference in
arguments is associated with proportionately larger differences in
logarithms. Thus, log 1 is 0, log 1.5 is 0.1761, log 9 is 0.3010 and
log,,3is 0.4771.

The logarithmic scale thus compresses the distribution (of say
income) at higher levels and stretches the same at lower level. Hence the
merit of the log-normal distribution lies more in the lower values of
income. But both the distribution of the exponential of random variables
are distributed according to other common distribution respectively thc
exponential distribution and normal distribution.

3.7 Measurement of Income Distribution :
Generally, there are four criteria for inequality measurement. They
_are—
(1) Anonymity Principle : ‘

From an ethical point of view, it does not matter who is earning the
income. Permutations of incomes among people should not matter for
inequality judgments.

Y\ S5Y, 8 ....5Y,

This is the equivalent of arranging individuals so that they are ranked
from poorest to richest (here y, = income).

86




(2) Population Principle :
Cloning the entire population (and their incomes) should not alter

. inequality. The population principle is a way of saying that population size

. does not matter : all that matters are the proportions of the population

. that earn different levels of income. :

‘ : The anonimity principle tells us that we can number people in order
of increasing income and no useful information is lost. The population
principle tells us that it does not matter how many people are there, we
may normalise everything to percentages.

(3) Relative Income Principle :

This principle says that only relative incomes should matter and the
absolute levels of these incomes should not. The advantage of this
approach is that it enables us to compare income distributions for two
countries that have different average income levels.

(4) The Dalton Principle :
The Dalton principle states that if one income distribution can bc
achieved from another by constructing a sequence of regressive transfers,
. then the new distribution must be deemed more unequal than the initial
. one. ’
Different techniques are used by economists to measure the
. distribution of incorme among members of a society. In particular, these
techniques are used to measure the inequality, or equality of income
within an economy. These techniques are typxca]ly catagorised as either
absolute measures or relative measures.

3.8 Absolute Measures :

Absolute measures define a minimum standard, then calculate the
| number (or percent) of individuals below this threshold. These methods
are most useful when determining the poverty in a society. Examples
include, :
e Poverty line :
This is a measure of the level of income necessary to subsistin a
society and varies from place to place and from time to time depending
" on the cost of living and peoples’ expectations. It is usually defined by
| governments and calculated as that level of income at which a household
will devote two-thirds (to three quarters) of its income to basic
necessities such as food, water, shelter and clothing.

‘@ Poverty Index :

I This index was developed by Amartya Sen. It takes into account
both the number of poor and the extent of their poverty. Sen defined the
index as,

[=(P/N) x (B - AA
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where, P = Number of people below the poverty line.
N = Total number of people in society.
B = Poverty line income.
A = Average income of those people below the poverty line.

3.9 Relative Measures :

Relative income measures compare the income of one individual (or
group) with the income of another individual (or group). These measures
are most useful when analysing the scope and distribution of income
inequality. Some examples include :

e Percentile distribution :

In this measure one percentile is compared to another percentile.
For example, it might be determined that the income of the top ten-
percentile is only slightly more than the bottom forty percentile. Or it
might be determined that the top quartile eames 45% of the society’s
income while the bottomn quartile has 10% of society’s income. The
interquartile range in a standard percentile ranges from 25% to 75%.

® Robin Hood Index :

The Robin Hood index is a measurement of income inequality
across a geographical area and is derived from the Lorenz curve.
Mathematically, it is related to the Gini coeffecient, it measures the
portion of total income that would have to be redistributed in order for
there to be perfect equality. This index is derived by finding the largest
vertical line, which can be drawn between a Lorenz curve for perfectly
even distribution of incomes and the measured Lorenz curve. Robin
Hood index is a measure of income inequality ranging from 0 (complete
equality) to 100 (complete inequality). This index is also known as the
Hoover index.

Y

A
: .

> 8
Gt ’
630 Robin Hood Index
2
8
L
o
O - 3 [
%o > X

Cummulative percentage of households
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® Theil Index :
This is a summary statistic used to measure income inequality, based
on information entropy. It is similar to, but less commonly used than the

Gini coeffecient.-It has also been used to measure the lack of racial
| diversity.

#® Aitkinson Index :

The Aitkinson index (also known as the Atkinson measure or
Aitkinson inequality measure) is a measure of income inequality
developed by Anthony Bames Aitkinson. Aitkinson index relies on the
| following axioms : .

(1) The index is symmetric in its arguments.

(i1) The index is non-negative, and is equal to zero only if all incomes
are the same.

i

(iii) This index satisfies the principle of transfers.

(iv) This index satisfies the population replication axiom; if a new
population is formed by replicating the existing population an arbitary
number of times, the inequality remains the same.

(v) The index satisfies mean independence, or income homogenity
axiom : If all incomes are multiplied by a positive constant, the inequality

remains the same.
|

¢ Standard deviation of income :

. This measures income dispersion by msmg the squared variance
from the mean. This metric is seldom seen, its use is limited to occasional
eference in academic joumnals.

¢ Relative Poverty line :

. This is a measure of the number or proportion of people or
households whose level of income is less than some given fraction of
typical incomes. This form of poverty measurement tends to concentrate
concern on the bottom half of the income distribution and pay less
attcntlon to inequalities in the top half.

Kuznet Curve :
Kuznet inverted-U shapped curve is a measure of income inequality.
Kuznets suggested on the experience of the developed countries that
historically there was a tendency for income inequality to increase first,
and then to be reduced as countrics developed from a low level.
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Coeffecient

v

Per Capita Income

There are other two most important measure of income inequality
viz Lorenz curve and Gini Coefiecient.

CHECK YOUR PROGRESS
1. Discuss Pareto’s law of Income Distribution. Compare and
contrast it with the log normal distribution.
2. Discuss the criteria or principles for measuring inequality in
income.
3. Discuss various absolute and relative measures used for
measuring income inequality.
4. Write short notes on the following
(2) Poverty Index  (a) Robin Hood Index
(a) Aitkinson Index  (a) Kuznet Curve

3.10 Lorenz Curve :

This is a graphic device used to display the relative inequality ina
distribution of income values. A society’s total income is ordered
according to income level and the cumulative total graphed. Thus, the
distribution of income within a community may be represented by the
Lorenz Curve. The Lorenz curve is a graphical represenation of the
cumulative distribution function of a probability distribution; it is a graph
showing the proportion of the distribution assumed by the bottom N% of|
the values. On the horizontal axis, we depict cammulative percentage of
the population arranged in increasing order of income. On the vertical
axis, we measure the percentage of national income accuring to any
particular fraction of the population thus arranged.

A perfectly equal income distribution would be one in which every
person has the same income. In this case, the bottoni N% of the socicty
would always have N% of the income. This can be depicted by the
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straight line y = x; called the line of perfect equality or the 45° line.
Lorenz curve begins and ends on this 45° line. This means that poorest
0% earn 0% of national income and the poorest 100% is just the whole
population and so must earn 100% of the income. When everybody had
the same income then Lorenz curve coincide everywhere with the 45°
line. But in practice, this type of instance is rare.

By contrast, a perfectly unequal distribution would be one in which
one person has all the income and everyone else has none. In that case,
the curve would be at y = 0 for all x < 100%. If y = 100% when
x=100%, this curve is called the line of perfect inequality.

100
80
E
E 60
2 4 ine of perfect equality
20
A Lorenz
8 curve
450 Al B o = 3 1
0 20 40 60 80 100
Cumulative Population
In the diagram above, poin A corresponds to a value of 20% on the
sopulation axis and 8% on the income axis. The interpretation is that the

poorest 20% of the population earns only 8% of overall income.

The overall distance between the 45° line and the Lorenz curve is
indicative of the amount of inequality present in the society. The greater
ihe extent of inequality, the further the Lorenz curve will be from the 45°

h.' 100%

e
 of =]
o £ ©
u g
=KD
"-l :
ety 0 4 100%

Cumulative Population
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In the diagram above, the curve (a) is always biased towards (i
poorest x% of the population, relative to (b). Hence (a) is more ¢q
than (b). In this case we can compare the extent of inequality of th
distribution of income. But sometime we cannot compare the inequalj
of the distribution on the basis of two Lorenz curves, when they inte
each other. In the diagram below we cannot say whether the Lore
curve (a) or (b) is having more equal distribution or not, as neither Lo
curve is uniformly to the right of the other.

100%

(®)

Cﬁmmulative Income

< (2)

100%
Cumulative Population

Every point on the Lorenz curve represents a statement like, “The
bottom 20% of all households have 10% of the total income.” The:
percentage of households is plotted on the X-axis, the percentage of &
income on the Y-axis. ‘

The Lorenz curve can also be used to show distribution of assets,
It was developed by Max O Lorenz in 1905 for representing income
distribution.

A Lorenz curve always starts at (0, 0) and ends at (1, 1). The
Lorenz curve is not defined if the mean of the probability distribution is
zero or infinite. The Lorenz curve for a probability distribution is a
cumulative function. However, Lorenz curves representing discontinuous
functions be constructed as the limit of Lorenz curves of probability
distributions, the line of perfect inequality being an example.

3.11 Gini Coeffecient :

The Gini coeffecient is a measure of inequality of a distribution,
defined as the ratio of area between the Lorenz curve of the distribution
and the curve of the uniform distribution. It is ofien used to measure
income inequality. It is a number between 0 and 1, where 0 corresponds
to perfect equality (i.e. everyone has the same income) and |
corresponds to perfect inequality (i.e one person has all the income, while
everyone else has zero income). It was developed by the Itallian
statistician corrado Gini and published in his paper ‘“Variability and \1
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Mutability” (1912).

: The Gini<oeffecient is equal to half of the relative mean dxfference
' The Gini index is the Gini coeffecient expressed as a percentage, and is
equal to the Gini coeffecient multiplied by 100. While the Gini coeffecient
is mostly used to measure income inequality, it can also be used to
measure wealth inequality. This use requires that no one has a negative
wealth. '

The Gini coeffecient is defined as a ratio of the areas on the Lorenz
curve diagram. If the area between the line of perfect equality and Lorenz
curve is A, and the area under the Lorenz curve is B, then the Gini
coeﬂ'ccncnt is A/(A+ B). Since A + B 0.5, the Gini coeffecient, G =
2A=1-2B.

—

00%

Line of perfect equality
~Gini Coeffecient

- Lorenz curve

income earned

Cummulative share of

2 100%
of The cumulative share of people from lower income

. STOP TO CONSIDER
Advantages of Gini Coeffecient :

(1) Gini-coeffecient can be used to compare income distributions
across different population sections as well as countries.

(2) Gini coeffecient can be used to indicate how the distribution
of income has changed with a country over a period of time, thus it is
possible to see if inequality is increasing or decreasing.

(3) Gini Coeffecient satisfies four important principles.

They are :

(a) Amonymity : It does not matter who the high and low eamers
are
- (b) Scale Independence : The Gini coeffecient does not
e consider the size of the economy, the way it is measured. or whether
s it is a rich or poor country on average.

1 | (c) Population Independence : It does not matter how large the
jle W | population of the country is.
A} (d) Transfer Principle : If income is transferred from a rich
nd person to a poor person, the resulting distribution is more equal.
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Disadvanta;ge of Gini Coeffecient :

(1) While the Gini coeffecient measures inequality of income, it
does not measure inequality of opportunity.

(2) If two countries have the same Gini coeffecient but one is rich
and the other is poor, it can be seen to measure two different things.
In a poor country, it measures the inequality in material life quality while
in a rich country it measures the distribution of luxury beyond the basic
necessities. _

(3) Gini coeffecient of different sets of people cannot be averaged
to obtain the Gini coeffecient of all people in the sets.

SELF-ASKING QUESTION

Do you think you can make a comparison between Lorenz
curve and Gini coefficient? Justify your answer. Which one is better
according to you?

3.12 Income Gini Indices / Coeffecient in the World :

While most developed European nations tend to have Gini
coeffecient between 0.24 and 0.36, the United States Gini coeffecient is
above 0.4, indicating that the United States have greater inequality.
According to the US census Bureau, Gini indices for United States at
various times are :

2000 : 46.2 2005 : 46.9
2006 : 47.0 (highest index reported) 2007 : 46.3
2008 : 46.69 2009 : 46.8

Using the Gini coeffecient can help quantity differences in welfare
and compensation policies and philosophies. However it should be borne
in mind that the Gini coeffecient can be misleading when used to make
political comparisons bétween large and small countries.

Poor countries (those with low per capita GDP) have Gini
coeffecient that have over the whole range, from low (0.25) to high
(0.71), while rich countries have generally low Gini coeffecient (under
0.40).

3.13 Income Gini Indices / Coeffecients of Assam and other states
of India :

While the overall income growth rate is slow, the Assamese society
has been more egalitarian than most other Indian states. The Gini
coeffecient in consumption expenditure distribution has been only around
0.19 for rural areas and around 0.29 for urban areas of Assam in recent ‘
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years.

Among the major Indian states, Assam’s income distribution is the
most egalitarian in rural areas and the second best in urban areas on an
average basis during 1990-94. The relevant details are tabulated below.

Table 4.3 7: Gini Indices/Coeffecient of some Indian states
(1990-91 to 1993-94)

State Rural Area Urban Area
Andhra Pradesh 28.39 32.50
Assam 19.27 28.94
Bihar : 22.36 ) 31.72
Gujrat , 24.07 29.52
Jammu and Kashmir 27.87 28.45
Karnataka 34.09 34.63
Kerala 30.62 © 3716
Madhya Pradesh 38.17 33.76
Maharastra 37.47 34.86
Orissa 4331 37.83
Rajasthan - 2798 29.61
Tamil Nadu 29.39 36.82
Uttar Pradesh 28.09 . 32.75
West Bengal 25.75 oV &y

Source : G Datt, Indian Journal of Labor Economics, 1998.

3.14 Summing Up

Income means the total amount of goods and services that a person
receives, and thus there is not necessarily money cash involved. Here
wee have studied two types of income distributions viz., pareto distributions
and log-normal distributions. Pareto distribution was originaily used to
describe the allocation of wealth among individuals since it seemed to
show that a larger portion of the wealth of any society is owned by a
smaller percentage of people. This idea is also expressed as the ‘Pareto
principle’ or the ‘80-20 rule’ which says 20% of the population owns
80% of the wealth.

The log-normal distribution is the probability distribution of any
random variable whose logarithm is normally distributed.

There are 4 criteria for measuring inequality in income, viz.,
‘anonymity principle, population principle, relative income principle and
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the Dalton principle.

There are two types of measures to measure income inequality-
Absolute measures and relative measures., Absolute measures definea
minirmum standard, then calculate the number (or percent) of individuals
below this standard. For eg., poverty line, poverty index etc. Relative
measures compare the income of one individual (or group) with the
income of another individual (or group). For eg., percentile distribution,
Robin Hood Index, Theil Index, Aitkinson Index etc.

CHECK YOUR PROGRESS

1. What is Lorenz Curve? Draw a Lorenz Curve.

2. Define Gini Coeffecient.

3. How Gini Coeffecient can be determined on the basis of Lorenz
Curve.

4. Write a note on the merits and demerits of Gini coefficient.

3,15 References and Suggested Readings :

1. Salvatore, Dominick and Reagle, Darrick, “Statistics and
Econometrics”, TMH.

2. - Klein, L.R., “An introduction to Econometrics.”

3. Ray, Debraj, “Development Economics”, Oxford University Press.

4. Hooda, PR., “Statistics for Business and Economics”, McMillan.
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Unit 4 : Index Number

Contents :
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43 System of Weighting in Index Numbers
44 Relation between Laspeyres’ and Paasche’s price Index Numbers
45  Test for Index Numbers
4.5.1 Time Reversal Test
4.5.2 Factor Reversal Test
4.5.3 Chained Indices : The Circular Test
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477 Base Shifting
48  Splicing of Index Number
49 Deflating of Index Numbers
1 4.10 Indices of Industrial Production
411 Summing Up '
1412 References and Suggested Readings

1 4.1 Introduction :

An index number is a2 measure designed to show average changes
in the price, quantity or value of a group of items with respect to time,
geographical location or situation.

- Index numbers are regarded as “barometers of economic activity.”
 They help in framing suitable policies making forecast of future economic
activity. Index numbers may be classified in terms of what they measure.
!In Economics and business the classification are :

(i) Price, (ii) Quantity, (iii) Value and (iv) Special Purpose.
- The index numbers are indicators which reflect the relative changes
in the level of certain phenomenon in any given period (or over a
specified period of time) called the current period with respect to its
value in some fixed period, called the base perise selected for
COMparison.

4.2 Objectives :
This unit is designed to help you understand the concept of index
mumbers. After reading this unit you will be able to,

1. Compare between Laspeyres’ and Paasche’s index number.
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2. Construct shifting, splicing and deflating imdex number.
3. Predict the trend of economic fluctuation.

4. Formulate future policies on economics depending on the
fluctuating trend.

4.3 System of Weighting in Index Numbers :

The commodities included for the construction of index numbers
(like food, clothing, housing, light and fuel) are not of equal importance.
In order that the index is representative of the average changes in the
level of phenomenon for group, proper weights should be assigned to
different commodities according to their respective importance in the
group. If we ignore weights, the result is not simply an un-weighted index,
but rather an inappropriate weighted index.

The weighted system adopted should truely reflect the importance of
each commodity. Since an index would not depend on the units in which
the price or quantities are reported, the prices are weighted by quantities,
the quantities by prices while the price relatives are weighted by values.
The prices and quantities used as weights may relate to the base period
or to the current period. '

Let us consider some important weighted price index numbers. The
weighted quantity indices can be constructed in a similar manner.

IfP_, denotes the price of the i th commodity in the base period, P,
the price of the ith commodity in the certain period and W, is the weight
attached to the price relative for the ith commodity then weighted

aggregate index is :
p JIRW
" Zrgw, A
B
' i P
Arithmeti P, =—2Wi
: etic Mean 0= Fw

y .- AN
Weighted Geometric Mean | Py = H P
£ oi

Weighted Harmonic Mean ¥ P W.

Different statisticians has constructed the formula for constructing
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: index number diﬁ‘crently. They have assigned different weights for
| computations of index numbers. Some of the formula are given below :

ne
1
: : Weight = q . = Base period ZP.q,;
Laspeyre’s quaxs:m i . Py ='£f,i;q:
A Weight = q, = Current pr _ 2Py
. Paasche period quantities ! ZP.q;
+o :
+q, |
e Marshall | Weight= Iy 2y = Average ’
> Edgeworth 2 ME _ ZP(qy +90:)
of current and base period| ZP,(q, +qoi)
S, N | Irving It is the geometric mean of Py, = By x Py
. Fisher. | Laspeyre’s and Paasche’s
od 4 e *P.q, _ P4,
price index numbers. = lifol 5 12N
PG ZFoiy;
e
. | Durbish | It is the arithmetic mean of L+P. i
‘; | ! and Laspeyre’s and Paasche’s P >
ed Bowley indices. :
| : : ZP;q, ¥ ZPqy
2 Py +qo  ZPyqy;
| 2
l Here weights are quantities P.q,

Kally which may refer to some Py = P q
period, not necessarily the % |
base year or current year. ) '

‘ Where,q. == q01 ;QH i

|Let us understand,

Types of Indices,

® Unweighted Index
~ Simple Average of the price Index
— Simple Aggregate Index

@ Weighted Index

. — Laspeyre’s Price Index

ng | — Paasche’s Price Index

@ Figher’s Price Index
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¢ Value Index

® Special Purpuse Index
— Consumer Price Index
— Producer Price Index
— S & P Index

4.4 Relation between Laspeyre’s and Paasche’s Price Index
Numbers :
Laspeyre’s and Paasche’s price index numbers are two most
important numbers in the statistical and economic theory of index
numbers. These two indices will in general, gives different results when
applied to the same set of data since they measure the change in the cost
of two distinct collection of commodities. These two indices will be equal
if either price of all the goods (included in the index) change in the same
ratio or if the quantitics of the goods change in the same ratio. Since
under normal circumstances, neither of these two indices is governed by
the correlation between price and quantity movements, as a result,
Laspeyre’s index will show greater rise, when prices in general rise, when
prices in general are rising and a smaller fall in a period of falling prices.
The exact relationship between the two indices can be derived by
considering the formula for the coeffecient of linear correlation. If we
have a series of pairs of observation of X and Y, each pair being
weighted by a frequency f, the sum of the frequencies being N, the
coeffecient of linear combination between X and Y is given by, '

_ Cov(X,Y)
e, § AR
0,0,

1
o N
L sx-%y [ Lsoy-y
JNz(x X) JNZ(Y Y)

(X -X)NY-Y)?

BR(XY) ZfX ZfY

N N N
. 8

In the above expression, ¢, and o, are the standard deviations of the
X and Y series respectively with the fs included as weights.

. Pii Qi . ' .
We substitute 'I;]_ for X, ;I" for Y and P q_ for fin the above
0i 0

i
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expression. Upon substitution we have,

o ) A Rt e ),

B N N N
By = 0.0,
N being the sum of frequenciés, f (i.e.,meqd)
Pu%s } pu ' s )
P.9- Pu9ei-— Poila-—
L Gy Oy = Z( Paqot) Z[ pd)_z( - q«]
Y Zp.,,qo. zpdqoi Zpdqci'
; ;
= Lyy Oy Oy = 209 —(Z Do ){Ep“‘q“ )
2.Pa%s 2 Pala \ 2Puls
[Zpuqa J(Zp..q,.] 7R
Zpdqa zpoiqu Zpdqoi v
2 ;Pl.‘-lh

lfzp 4 is defined as V,;, which is the index of value expanded

| bctwecp the base penod and the / thpenod, then,

zpdqoi Zpa% ¥
dividing both sides by E (or V.
viding sides by Zpdqd (or V) we get,
(Zpﬁqoi ]( Zpoiqh ]
D Puei N2 Pai 1B Tx Oy
( zph‘h ] Vi
| 2 Puls
(thqd ][_Zpoi‘hi )= 1o ey Ox Oy
meqm Zpliqoi Voi
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—Plx—_=]-
ol Pa
P V.
53 .
— Pol ol i r)(Y 'OX ‘GY

Ph \,'ai
From the above expression it is clear that the expression on the left

La

P 2
hand side, ie F(:T would be equal to unity and consequently P;*= P&,
01 i

only if eitherr_, o, or o, is equal to zero.
Nomnally, since
-1 SLo< 1 and ¢ # 0 and G, # 0
5 B,

Paasche’s index has a downward bias while Laspeyre’s index has
an upward bias. Paasche’s index in comparison to Laspeyre’s index,
shows a smaller rise when the prices in general are rising and a greater
fall when the prices in general are falling. This can be expressed by saying
that Laspeyre’s price index tends underestimate price changes. However,
Laspeyre’s price index is not always higher than Paasche’s price index.

STOP TO CONSIDER

Laaspeyre’s Index :

Advantage :

It requires quantity data from only the base period. This allows a
more meaningful comparison over time. The changes in the index can be
attributed to changes in the price.

Disadvantage : .

It does not reflect changes in buying pattems over time. Also it may
over weight goods whose prices increase.

Paasche’s Index :

Advantage :

It uses quantities from the current period. Hence it reflects current
buying habits.

Disadvantage :

It requires quantlty data for the current year. As different quantities |
are used each year, it is impossible to attribute changes in the index to |
changes in the price alone. It tends to overweight the goods whose prices
have declined. It requires the prices to be recomputed cach year.
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4.5 Test for Index Numbers :

According to Irving Fisher, any good index number should satisfy
two sets of tests viz. the time reversal test and factor reversal test.

4.5.1 Time Reversal Test :

Time reversal test is a test to determine whether a given method will
work both ways in time forward and backward. In the words of Irving
Fisher, “The test is that the formula for calculating an index number
should be such that it will give the same ratio between one point of
comparison and the other, no matter which of the two is taken as base,
or putting in other way, the index number reckoned forward should be
reciprocal of that reckoned backward.”

Time reversal test is satisfied by the following index number
formulae

(1) Simple Aggregate Index.
(2) Marshall Edgeworth Formula.
(3) Walsch Formula.
(4) Fisher’s 1deal Formula.
(5) Kelly’s Fixed Weight Formula.
(6) Simple Geometric Mean or Price Relatives Formula. -
(7) Weighted Geometric Mean of Price Relatives Formula with
Fixed Weights. :
Laspeyre’s and Paasche’s index numbers donot satisfy the time
reversal test. -
Proof : Laspeyre’s price index is,
o= _Efﬂg_
2Pq,

= ZPq,.
2 0
il T

ZPq, % ZP,q, -
IPq, ZRgq,
Paasche’s price index is,
= ZPq,

ZPyq,

1

Now, Poi % Po=

) Pm

: i 2Po‘lo
- - O ot
R,

ZPq, ZPgq
P, xP,=—12bx —20 1
LR IPq, ZRgq,
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But if Laspeyre’s price index is equal to Paasche’s price index. then
both of these index numbers satisfy the time reversal test.

According to this test, any index number formula to be accurate
should be time consistant. Thus, P, measure price movements between
period 0 (base period) and period 1 (current period), while P, measures
the price movements between period 1 (base period) and period 0
(current period}, we ought to have,

1
Py ="PT“
10

= Py, Py =1 ,
The left hand side of the equations, (i)
2Py ZPydy _ $5 TyOxCy
ZPyqe ZPyq) To

Can be expressed as,

1

P‘VPa Or Pf;,l’
POI y P La

01

Hence, neither Laspeyre’s nor Paasche’s index number formula will
satisfy the time reversal test except when either r_or G or o, equals to
zero, i.e. the conditions which are rarely fulfilled under normal
circumstances. Besides, normally Laspeyre’s index shows an upward
bias while Paasche’s index shows a downward bias of the same relative
magnitude in relation to the test. The test is satisfied by the simple
geometric mean of price relatives the simple aggregative index, by the
median and mode of the price relatives as well as by the Edgeworth
Marshall formula and Fisher’s ideal index number. The weighted
geometric mean of price relatives and the weighted aggregative index will
satisfy the time reversal test if the weights are constant.

Fisher’s ideal formula satisfy the test.

Proof:

P = ZPq, % ZP g,
% ysp TP
090 o

Changing time i.e. 0 to 1 and 1 to 0,

Pm:\/zpo% - ZPq,
2Pq, ZXPgq,

104

: . ‘



PP =\/ZP1% - ZPg, 5 ZP,q, xzpoqo
o1f10
ZP9q, ZPq, ZPq, .ZPgq,

=i=1

Hence, Fisher’s index number satisfy the time reversal test.

| 4.5.2 Factor Reversal Test :

| Factor Reversal test holds that the product of a price index and the
quantity index should be usual to the corresponding value index. In the
word of fisher, “Just as each formula should permit the interchange of the
- two times without giving inconsistent results, so it ought to permit
interchanging the prices and quantities without giving inconsistent result.
i.c. the two results multiplied together should give the true value ratio.
In the test the change in price multiplied by the change in quantity
should be equal to the total change in value. The total value of a given-
commodity in the price per unit (total value = p x q). If p, and p,
represent prices and q, and g, represent quantities in the current year and
base year respectively, and if p,, represents the change in price in current
| year and Q,, is the change in quantity in the current year, then
Poy xQq = g'%‘
Po9o
The factor reversal test is satisfied only by Fisher’s ideal index
- number. :

Proof
B J Zpg, | 2P
' Zpd,  ZPod;
Changing p to q and q to p we have,
| Q= Zq,p, % Zq,p,
Zq,py  Zqop,

Py xQy =\/2plqo 3 2Py X Z9,P, X Zq,p,
pdo  ZPod; ZqePy  ZqePy

However Fisher’s index number, although satisfies the above
- mentioned two tests suffer from lack of clarity of meaning. It is not at
clear, the change in which collection of goods is measured by Fisher’s
ideal index number.
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4.5.3 Chained Indices : The Circular Test :

We have considered so far that base period remains fixed.
However, with the passage of time, the various types, quality and
importance of the various commodities as well as the tastes and habits
of the consumers undergo a change. Thus, if we wish to compare the
price movements over successive time pcriods 0, 1,2, ..., ninstead of
using a fixed base period 0, we compute number of link indices p;,. P,
< s P, p» P,- Thus by chaining together the link indices we obtain the

chained indices as follows—
pOl :
Po? = PmPu

P;: = Py, P, Py

Now any chained index P2 will be equal to the coresponding fixed
base index if it satisfies the circular test which can be stated symbolically

POIPll """ Pn-anPno = l

The circular test is an extension of time reversal test for more than
two periods and is based on the shiftability of base period. The circular
test is not met by simple geometric mean of price relatives and the
weighted aggregative fixed weights. Laspeyre’s and Paasche’s index
numbers and their derivatives, the Marshall-Edgeworth and the Ideal
indices donot meet the circular test. Because, the weights in those index
numbers depend on the periods between which comparisons are being
made. If these periods change, the weight change.

" When the test is applied to simple aggregative method, we will get,
ip,  Zpy  ZPe
; EPo ‘ zpl sz
Similarly, when applied to fixed weight aggregative method, we get,

Zpq . Zp.q  ZPA _,
Zpd Zpq ZpAg
Laspeyre’s index does not satisfy this test.

pl o PH x P = 2p,9 2 Zp,q, XAZPOQz %1
o1 12 0 =
Pedo 2P ZP24:
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STOP TO CONSIDER
Uses of Chain Base Index Number :

(i) In the chain base method the comparison are made with the
immediate past (preceding year) and accordingly the data (for the two
periods being compared) are relatively homogenous. The comparisons
are therefore, more valid and meaningful and resulting index is more
representative of the current trends in the tastes, habits, customs and
fashions of the society. ‘

(ii) In this method, new commodities or items may be included
and old and obsolute items may be deducted without impairing
comparability and without requiring the recalculation of the entire series
of index numbers, which is necessary in case of fixed base method.

Differences between Fixed Base and Chained Base Methods

Fixed Base Chain Base

1.It has a fixed base 1.It’s base period changes

2.When the base year is 2.Comparison becomes relevant
from a distant past, it R
becomes irrelevant.

3.In fixed base, base 3.Here, as the base year is the

year is always a normal year. preceding period, sometimes

that year may not be a normal

year.In that case the result may
be doubtful.

4.6 Fisher’s Index Number :

Laspeyre’s index number tends to overweight goods whose price
have increased. Paasche’s index tends to overweight goods whose price
have gone down. Fisher’s ideal index was developed in an attempt to
offset these shortcomings.

Fisher’s index number is called the ideal index number, because,

(1) It is based on the geometric mean which is theoretically
considered to be the best average for constructing index numbers.

(2) It takes into account both current year as well as base year
prices and quantities.

(3) It satisfies both the time reversal test as well as the factor
reversal test.

(4) It is free from any bias.
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Example 1 :

Prove that Fisher’s ideal index number lies between Laspeye’s and
Paasche’s index numbers.

Solution :

Let us consider two real positive numbers a and b such thata >0
and b > 0.

Let,a<i) also,a<b
a* <ab (multiplying bya>0 => ab <b? (multiplying by b >0)

=a<fab =>+ab<b
(- a> 0, negative sign rejected)

=a<b

=>a<+ab<bh.

Thus, the geometric mean of two real positive numbers lies between
them. Hence, Fistier’s ideal index number which is the geometric mean
of Laspeyre’s and Paasche’s index number, lies between them. More

precisely,
If PX* <P then PX* <PJ, <P}
If PP <P} then By <Py <Py

In particular if P5* = PI*, then all the three indices are equal.

Example 2 :

Construct index numbers of prices from the following data by
applying,
1, Laspeyre’s method
2. Paasche’s method
3. Fisher’s Ideal method

2000 2010 |
Commodity | Price Quantity + Price Quantity
A 2 8 4 6
B 5 10 6 5
C 4 14 5 10
> 2 19 2 13
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Solution :

Commodity 2000 2010 | P | P p4, |P4
Price | Quant. | Price | Quant]
po qo pl ql
A 2 8 4 6 |-:32.71.16 24 | 12
B 5 10 6 5 60 | 50 30 | 25
¢ 4 14 5 10 70 | 56 50 | 40
D 2 19 2 13 38 | 38 26 | 26
Tpdo| IR |ZPG, | 2P,
=200 |=160 |=130 |=103

1. Laspeyre’s Method

P(',,=—22'—1°—x100=%-ggx100=125

Zpy9,o

2. Paasche’s Method

5
Po,=-?-'ﬂ*-xloo=%xlpo=1zszl

Zpods

3. Fisher’s Ideal Index

,qu $pa, ,200 130
y I 120 x =13 %100 = | =—— x — x 100= 125.6
* VZpdo Zped 160 103 1

CHECK YOUR PROGRESS

1. Define Index number. What is the relation between Laspeyre’s
and Paasche’s index mimbers?

2. What is time Reversal Test? Does Fisher’s ideal index satisfy
time reversal test? Prove.

3. 'What is factor Reversal test? Does the indices of Laspeyre’s
and Paasche’s indices satisfy this test? Prove. o

4. Distinguish between Laspeyre’s and Paasche’s index number.
Show how Fisher’s ideal index number is derived from these two.

5. What is chain base index number?

6. Compute index numbers from the following data by using (i)
Laspeyre’s (i) Paasche’s and (iii) Fisher’s ideal index method. |
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BaseYear Current Year
Commodity | Quantity Price Quantity Price
A 12 10 15 12
B 15 7 20 5
c 24 5 20 9
D 5 16 5 14
4.7 Base Shifting :

Base shifting means the changing of the given base period of a series
of index numbers and recasting themi into a new series based on some
recent new base period. The base period can be satisfied to any
convenient subsequent period if a particular index number formula
satisfies the circular test. Base shifting requires the recomputation of the
entire series of the index numbers with the new base. There are two
important reasons for shifting the base. They arc—

(1) When the base year is too old or too distant from the current
period, to make meningful and valid comparisons some recent base
period are needed.

(2) If we want to compare series of index numbers with different
base periods, to make quick and valid comparisons both the series must
be expressed with a common base period.

For base shifting it actually needs the recomputation of the entire
series of the index numbers with the new base assigning appropriate |
weights to the items included in the indices. It is a very difficult task.

One way of tackling the problem of base shifting in a much simpler
way consists in taking the index number of the new base year as 100 and
then expressing the given series of index numbers as a percentage of the
index number to be adopted as new base.

An index number recast to the new base (i.e. new base index
number) is :

New base index no. of a year =

Old index no. of the given year %100
Old Index no. of the new base year

100
= X
(Old Index no. of the new base ycar)

(old index no. of the given year)
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Thus the new series of index numbers can be obtained on
multiplying the old index numbers by the common factor.

In the case of the simple aggregative index (which satisfics the
circular test), the base period can be shifted from period 0 to period 2,
by using the following relation :

Poy TP, 2Py XP,

_ 20 _ T s
Pz:‘ -

P, =P, 3XP, ZIP,

Such a procedure is not valid in the case of index numbers which
donot satisfy the circular test. In particular, however, this limitation is
usualfy ignored and the above procedure is followed viz Expressing the
given series of index numbers as a percentage of the index number of the
time period selected as the new base year. For example, suppose we
have the following series with 1996 as base.

Year Index Number ; -In_dex ‘Number
(Base 1998 = 100)
1996 100 :—So—g x 100
1997 130 % x 100
1998 150 :—zgx 100
1999 | 175 -:SL(S)X 100
2000 - 180 ;35;% %100

Now, if we wish to shift the base to 1998 it can be done as given
in the third celumn.

4.8 Splicing of Index Number :

Splicing is an application of the principle of base shifting. It consists
in combining two or more overlapping series of index numbers to obtain
a single continuous series. This continuty of the series of index number is
required to facilitate comparisons. In order to secure continuty in
comparisons the two series are put together or spliced together to get a
continuous series with base shifting, the splicing technique will give
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accurate results only for the index number which satisfy circular test.

The process of splicing is very simple and is akin to that used in
shifting the base.

There may be forward splicing and backward splicing. If an old
series is connected with the new one in the sense that the indices of the
old series are converted to the base of the new series, it is known as
forward splicing. The formula for forward splicing is—

Forward spliced Index No. = Index no. to be spliced x

New index no. of the new base year
0ld index no. of the new base year

Again, if the new series is connected with the old one in the sense
that the indices of the new series are converted to the base of the old
series then it is called backward splicing. The formula for backward
splicing is,

Backward spliced Index No. = Index no. to be spliced x

Old index no. of the new base year
‘New index no. of the new base year-

Example :

We have the following two overlapping series of index number
series. Here, either the new series can be spliced to the old one or the
old one can be spliced to the new one. This is achieved by the method
of proportions.

Year All India All India  New Series Old series
consumer consumer  spliced to spliced to the
pricelndex  price Index the old new one
(1949 = 100) (1954 = 100) one
old series new series  (Backward) (Forward)

100

100 x —

1949 100 100 %253
100

101 x —

1950 101 - 101 T
100

1951 105 105 105 x—
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100
: 103 x —
1952 103 103 =
100
106 x —
1953 s 106 .
1954 101 100 : 101 100
101 .
97 —_
1955 97 X 100 97
X 101
) 108 x —
1956 108 X 100 108
: 101
115%x —
1957 115 G 115
' 101
120 x —=
(1958 120 120x3 120
¢ 101 .
' 124 x —
.i 1959 124 100 124
| SELF-ASKING QUESTION
' Do you think there is any difference between base shifting and |
splicing of index number? Justify your answer.

4.9 Deflating of Index Numbers :

Deflating means adjusting, correcting or reducing a value which is
inflated. Hence by deflating of the price index numbers we mean
adjusting them after making allowance for the effect of changing price
levels. This technique is extensively used to deflate value series or value
indices, rupee sales, income, inventories, wages and so on.

Thus, in a period of rising prices, the increase in the prices of
commodities means a fall in the real income of the consumers: Thus, the
nominal wages would have to be adjusted for price increases to arrive
at the real wages or the deflated income. Thus,

Money or Nominal Wages
Price Index

x 100

Real Wages =

This technique can be used to deflate index number series of sales,
inventories €tc.
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Example : |

The consumer price index over a certain period increased from 12
to 215 and the wages of a worker increased from Rs. 1680 to Rs. 30
What is the gain or less of the workers?
Solution :

We are given, .

Consumer price index in period 1 = 120

Consumer price index in period 2 = 215

The wages of the workers in period 1 and 2 and given to be Ry
1680 and Rs. 3000 respectively.

The real wages of the workers in the current period 2 with respec
to the period 1 as base are given by,

120
—== % 3000=
S 1,674.42 Rs.

Since this wage is less than wages of the workers in period 1 (Rs
1,680) the workers are not better off but worse off by Rs. 5.58 a
compared to the period 1.

4.10 Indices of Industrial Production :

The index numbers of industrial production is designed to measun
mcrease or decrease in the level of industrial production in a given periol
compared to some base period. Such an index number changes in th
quantum of production and not in values. Hence, indices of industriz
production measures movements in the quantum of production of th
individual firms and industries which contribute to the national aggregate

- Such indices are generally limited to production taking place in secondar
industries.

The quantum of production of a firm may be defined as the quantit
component of the value added by the firm. Thus, if P and Q denotes th
price and quantity of the output and p and q the price and quantity of th
input, then the values added by a firm producing a single output with th
help of a single input = PQ — pq.

The movement in the value added as between periods 0 and 1 ca
be expressed by the ratio.

. PQ,-pq,
PoQo = PoYo

This ratio can be expressed as the product of its price componen
and quantity component as follows :
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PQ, -p,q, o PiQ, — po, 3 PQ,-p%
PQ,—Pod PeQo—Pod0 PoQ:—Pod;

. PQ,-pg, - PQ,-pd, x P,Q, — P19 .
PiQo —Pelo  PiQo—Pido PoQo‘- PoYo (1)

The first term on the right side of both equations (i) and (ii) can be
regarded as the quantity component while the second term can be
regarded as the price component of the movement in the value added by
© the firm.

Thus, even with a single input-single output firm, we have two

indices of industrial production measuring movement in the quantum of
production viz

PQ, —Poli PQ,-pg;
9Qo Po‘Io PQo —1:90
The above two measures are the Laspeyre’s and the Paasche’s
types respectively. :
In the case of a multi-product firm utilising more than one input, we
arrive at the following two measures,

e ZPQ, —Zpyq,
G
l ZP,Q, — Zpod,

Pa _ ZPQ, —Zpq,
pd
l ZPQ, - Zp,q, A
 Using the same principle the indices of industrial produetion for
individual industries can be combined into an index of industrial
production as a whole.

CHECK YOUR PROGRESS

1. What do you mean by deﬂatmg using Index numbers ? °
[GU(MA/MSc)Prev *06]
2. Explain splicing and deflating of index number.
" [GU(MA/MSc)Prev '09]
3. What do you mean by indices of industrial production ? Write a note
on the indices of Industrial Production.

4. Explain with an example how the base year of index numbers are
shifted.

4.11 Summing Up :
An index number is a measure designed to show average changes
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in the price, quantity or value of a group of items with respect to time,
geographical location or situation. In order that the index is representative
of the average changes in the level of phenomenon for group, proper
weights should be assigned to different commodities according to their
respective importance in the group.

According to Irving Fisher, any good index number should satisfy
two sets of test viz., the time reversal test and factor reversal test. Another
test to check the adequacy of index number is the circular test.

Base shifting means the changing of the given base period of a
series of index number and recasting them into a new series based on
some new base period.

Splicing is an application of the principle of base shifting. It consists
in combining two or more overlapping series of index numbers to obtain
a single continuous series.

Deflating of price index numbers means adjusting them after making
allowance for the effect of changing price level.

Index numbers of industrial production is designed to measure
increase or decrease in the level of industrial production in a given period
compared to sorme base period. They measures movements in the quantum
of production of the individual firms and industries which contribute to the
national aggregate.
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