2019

MATHEMATICS

(General)

(Abstract Algebra and Matrices)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer either in English or in Assamese

PART—I

(Marks: 7)

Answer the following questions : 1×7=7
 তলৰ প্ৰশ্নবোৰৰ উত্তৰ দিয়া :

- (a) Define order of an element of a group.
 এটা সংঘৰ মৌল এটাৰ মৌলাংকৰ সংজ্ঞা দিয়া।
- (b) Find the order of ω and ω² in the multiplicative group G = {1, ω, ω²}, where ω is a cube root of unity.
 গুণ্ধীনৰ সংঘ G = {1, ω, ω²} ত ω আৰু ω²ৰ মৌলাংক নির্ণয় কৰা, য'ত ω হ'ল ঘনকীয় একক মূল।

- Give an example of a cyclic group of order 4. 4 মৌলাংকৰ চক্ৰীয় সংঘ এটাৰ উদাহৰণ দিয়া।
- (d) What is the identity element of the quotient group G/N? ভাগফল সংঘ G/Nৰ একক মৌলটো কি?
- What is the rank of a null matrix? ৰিক্ত মৌলকক্ষ এটাৰ কোটি কিমান?
- When is a square matrix A said to be invertible? এটা বর্গীয় মৌলকক্ষ A-ক কেতিয়া প্রতিলোমনীয় বুলি কোৱা হয়?
- Find the cycles of the following permutation: তলত দিয়া বিন্যাসটোৰ চক্ৰবোৰ নিৰ্ণয় কৰা :

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 4 & 5 & 1 & 7 & 2 \end{pmatrix}$$

PART-II

(Marks: 8)

- 2. Answer the following questions: $2 \times 4 = 8$ তলৰ প্ৰশ্নবোৰৰ উত্তৰ দিয়া :
 - (a) Show that $(\mathbb{N}, +)$ is not a group. দৈশুওবা যে (IN, +) এটা সংঘ নহয়।

- (b) Define an isomorphism from a group to another group and give an example of it. এটা সংঘৰ পৰা আন এটা সংঘলৈ সমৰূপতাৰ সংজ্ঞা লিখা আৰু ইয়াৰ এটা উদাহৰণ দিয়া।
- Define right cosets and left cosets of a subgroup of a group. এটা সংঘৰ উপসংঘৰ সোঁ আৰু বাওঁ সহসংহতিৰ সংজ্ঞা निथा।
- Define symmetric and skew-symmetric matrix. সম্মিত আৰু বিষম-সম্মিত মৌলকক্ষৰ সংজ্ঞা লিখা।

PART-III

(Marks: 15)

- 3. Answer any three of the following questions: 5×3=15 তলত দিয়া প্ৰশ্নবোৰৰ যি কোনো তিনিটাৰ উত্তৰ দিয়া :
 - Define a group. Prove that in a group G, identity element is unique and inverse of each $a \in G$ is unique. 1+2+2=5 সংঘৰ সংজ্ঞা লিখা। প্ৰমাণ কৰা যে সংঘ Gৰ নিৰপেক্ষ মৌল অদ্বিতীয় আৰু প্ৰতিটো মৌল $a \in G$ ৰ প্ৰতিলোম অদ্বিতীয়।

J #

- (b) Prove that every cyclic group is Abelian.
 Is the converse true? Justify your answer.
 3+1+1=5
 প্রমাণ কৰা যে প্রতিটো চক্রীয় সংঘ এবেলীয়। ইয়াৰ বিপৰীতটো সতানেকি? তোমাৰ উত্তৰৰ যুক্তিযুক্ততা প্রতিপন্ন কৰা।
- (c) Define normal subgroup of a group.

 Show that intersection of two normal subgroups is again a normal subgroup.

 2+3=5

সংঘৰ নিশ্চৰ উপসংঘৰ সংজ্ঞা দিয়া। দেখুওৱা যে দুটা নিশ্চৰ উপসংঘৰ ছেদনও এটা নিশ্চৰ উপসংঘ হ'ব।

- (d) Prove that a square matrix can be uniquely expressed as the sum of a symmetric and a skew-symmetric matrix.

 প্রমাণ কৰা যে এটা বর্গ মৌলকক্ষক অদ্বিতীয়ভাবে এটা সমমিত আৰু এটা বিষম-সমমিত মৌলকক্ষৰ যোগফল হিচাবে প্রকাশ কৰিব পাৰি।
- (e) For two matrices $A = \begin{pmatrix} 3 & -4 \\ 1 & 1 \\ 2 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 3 & 4 \end{pmatrix}$, verify (AB)' = B'A'.

$$A = \begin{pmatrix} 3 & -4 \\ 1 & 1 \\ 2 & 0 \end{pmatrix}$$
 আৰু $B = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 3 & 4 \end{pmatrix}$ মৌলকক্ষ

দূটাৰ বাবে সত্যাপন কৰা যে (AB)' = B'A'.

PART-IV

(Marks: 30)

Answer either (a) and (b) or (c) and (d) from each of the following questions: 10×3=30 তলৰ প্ৰতিটো প্ৰশ্নৰ পৰা (a) আৰু (b) অথবা (c) আৰু (d) ৰ উত্তৰ দিয়া:

- 4. (a) An operation '*' defined on the set \mathbb{Z} of integers by a*b=a+b+1, $\forall a,b\in\mathbb{Z}$. Show that (\mathbb{Z} , *) is an Abelian group. 5

 অখণ্ড সংখ্যাৰ সংহতি \mathbb{Z} ত এটা প্ৰক্ৰিয়া '*'ৰ সংজ্ঞা এনেদৰে দিয়া আছে a*b=a+b+1, $\forall a,b\in\mathbb{Z}$.

 দেখুওৱা যে (\mathbb{Z} , *) এটা এবেলীয় সংঘ।
 - (b) State and prove Lagrange's theorem on order of a subgroup of a finite group. 1+4=5
 এটা সসীম সংঘৰ উপসংঘৰ মৌলাংক সম্পৰ্কীয় লাগ্ৰাঞ্জৰ
 প্ৰমেয়টোৰ উক্তি আৰু প্ৰমাণ লিখা।
 - (c) Prove that in a ring R (i) (-a)(-b) = ab, $\forall a, b \in R$ (ii) a(b-c) = ab-ac, $\forall a, b, c \in R$

5

যি কোনো এটা বলয় R ৰ বাবে প্ৰমাণ কৰা যে

- (i) (-a)(-b) = ab, $\forall a, b \in R$
- (ii) a(b-c) = ab-ac, $\forall a, b, c \in R$
- (d) Let $M = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} / a, b, c, d \in \mathbb{Z} \right\}$. Show

that M forms a ring under matrix addition and multiplication.

ধৰা হ'ল $M = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} / a, b, c, d \in \mathbb{Z} \right\}.$

দেখুওৱা যে মৌলকক্ষৰ যোগ আৰু পূৰণ প্ৰক্ৰিয়া সাপেক্ষে M-এ এটা বলয় গঠন কৰে।

- 5. (a) Define quotient group. Prove that every quotient group of an Abelian group is Abelian. 2+3=5 ভাগফল সংঘৰ সংজ্ঞা দিয়া। প্রমাণ কৰা যে প্রতিটো এবেলীয় সংঘৰ ভাগফল সংঘ এটা এবেলীয় সংঘ।
 - (b) Let N be a normal subgroup of a group G.
 f: G → G/N is defined by f(x) = xN,
 ∀x ∈ G. Show that f is an onto homomorphism and also find the kernel of f.
 4+1=5
 বৰা হ'ল N, সংঘ Gৰ নিশ্চৰ উপসংঘ।
 f: G → G/N ফলনটো সংজ্ঞাবদ্ধ কৰা হৈছে
 এনেদৰে: f(x) = xN, ∀x ∈ G. দেখুওৱা যে f
 এটা আচ্ছাদক সমৰূপতা আৰু লগতে Kernel of f
 নিশ্য কৰা।

(c) Show that

$$\mathbb{Z}[i] = \{a+ib: a, b \in \mathbb{Z}, i^2 = -1\} \subseteq \mathbb{C}$$

forms a commutative ring with unity under the operations of addition and multiplication of complex numbers.

$$\mathbb{Z}[i] = \{a+ib: a, b \in \mathbb{Z}, i^2 = -1\} \subseteq \mathbb{C}$$

য়ে জটিল সংখ্যাৰ যোগ আৰু পূৰণ সাপেক্ষে এটা এককসহ ক্ৰমবিনিমেয় বলয় গঠন কৰে।

- (d) Let R be a ring with unity such that $(xy)^2 = x^2y^2$, $\forall x, y \in R$. Show that R is a commutative ring.

 ধৰা হ'ল R এটা এককসহ বলয় য'ত $(xy)^2 = x^2y^2$, $\forall x, y \in R$. দেখুওৱা যে R এটা ক্রমবিনিমেয় বলয়।
- 6. (a) If A and B are two n-square matrices, show that adj(AB) = (adj B)(adj A). 5

 A আৰু B দুটা n-বৰ্গীয় মৌলকক্ষ হ'লে, দেখুওৱা যে adj(AB) = (adj B)(adj A).
 - (b) If A is an n-square matrix, then show that $|adj A| = |A|^{n-1}$. 5

 A এটা n-বৰ্গীয় মৌলকক্ষ। দেখুওৱা যে $|adj A| = |A|^{n-1}$.

5

5

(c) Find the values of λ and μ for which the system of equations

$$x+y+z=6$$
$$x+2y+3z=10$$
$$x+2y+\lambda z=\mu$$

has-

- (i) no solution;
- (ii) unique solution;
- (iii) infinite number of solutions.

λ আৰু μ ৰ মানবোৰ উলিওৱা যাতে তলত দিয়া সমীকৰণবোৰৰ—

$$x+y+z=6$$
$$x+2y+3z=10$$
$$x+2y+\lambda z=\mu$$

- (i) কোনো সমাধান নাথাকে;
- (ii) এক অদ্বিতীয় সমাধান থাকে; .
- (iii) অসীম সংখ্যক সমাধান থাকে।
- (d) Solve by matrix method:

5

5

মৌলকক্ষ পদ্ধতিৰে সমাধান কৰা :

$$x+y+z=1$$
$$3x+4y+5z=2$$
$$2x+3y+4z=1$$

* * *