3 (Sem-2) CHM M 1

2018

CHEMISTRY

(Major)

Paper : 2.1

(Physical Chemistry)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following as directed: $1 \times 7 = 7$

- (a) State True or False:"Gases can be liquefied by applying pressure at any temperature."
- (b) Find the critical volume of helium gas $(b = 0.01927 \text{ dm}^3 \text{ mol}^{-1}).$
- (c) If c₀ is the speed of light in vacuum and c is the speed of light in a medium, then what will be the expression for refractive index of the medium?

- (d) Choose the correct answer:

 At the same temperature, 0.01M solution of urea is isotonic with
 - (i) 0.01 M NaCl solution
 - (ii) 0.01M MgCl₂ solution
 - (iii) 0.01M glucose solution
 - (iv) 0.01M sodium acetate solution
 - (e) Choose the correct answer:

 If ΔT_b is the elevation in boiling point for an electrolytic solution and ΔT_b° is elevation of the boiling point for a non-electrolyte solution of the same concentration in the same solvent, then the van't Hoff factor is given by
 - (i) $\Delta T_b \times \Delta T_b^{\circ}$
 - (ii) $\Delta T_b^{\circ} / \Delta T_b$
 - (iii) $\frac{\Delta T_b \Delta T_b^{\circ}}{2}$
 - (iv) $\Delta T_b / \Delta T_b^{\circ}$
 - (f) Define molar conductivity of an electrolytic solution.
 - (g) Give the condition for maximum buffer capacity of a buffer solution.

2.	Answer	the	following	questions	:	2×4=8
----	--------	-----	-----------	-----------	---	-------

- For a monatomic ideal gas, show that (a) the molar heat capacity at constant volume is 12.471 JK⁻¹ mol⁻¹.
- A liquid P has half the surface tension of (b) liquid O. Again the density of liquid P is twice the density of liquid Q. If in a capillary tube P rises to 10.0 cm, what will be the rise of liquid Q in the same capillary tube when inserted identically at the same temperature?
- (c) Define ideal solutions. Give the values of ΔV and $\Delta_{mix}H$ for an ideal solution.
 - What are concentration cells? Give one (d) suitable example of concentration cell with transference.
- 3. Answer the following questions (any three): 5×3=15

- (i) Give the postulates of kinetic (a) molecular theory of gases. 3
 - (ii) Give the limitations of van der Waals equation of state. 2

(<i>D)</i>	molecule? Calculate the various degrees	
	of freedom of the following molecules: 2+3=	=5
	(i) CO ₂	
	(ii) H ₂ O	
(c)	(i) Give the principle of the stalagmo- meter method of determination of surface tension of a liquid.	3
	(ii) The numbers of drops of water and an organic liquid in drop number method from a stalagmometer are 100 and 200 respectively. Calculate the surface tension of the organic liquid at 298 K. Given that at 298 K, the surface tension of water is $7 \cdot 28 \times 10^{-3}$ N m ⁻¹ , density of water is $1 \cdot 0$ kg dm ⁻³ and density of the organic liquid is $0 \cdot 9$ kg dm ⁻³ .	2
(d)	(i) What is limiting molar conductivity? State the Kohlrausch law of the independent migration of ions.	2
	(ii) The limiting molar conductances of Al ³⁺ and SO ₄ ²⁻ are 189 S cm ² mol ⁻¹ and 160 S cm ² mol ⁻¹ respectively. Calculate the limiting molar	3
	conductance of $Al_2(SO_4)_3$.	J

(Continued)

8A/738

(e)	(i) Define degree of dissociation of a weak electrolyte.	1
	(ii) State Ostwald's dilution law. Explain the law with the help of a suitable example.	4
4. (a)	Answer either [(i) and (ii)] or [(iii) and (iv)]:	
	(i) Derive the equation of corresponding states. Justify why this equation can be considered as a generalized equation of state for a gas.	5
	(ii) Derive an expression for osmotic pressure of a dilute solution from thermodynamic consideration.	5
	(iii) What are transport properties of gas? Using kinetic theory, derive an expression for self-diffusion coefficient of a gas.	5
	(iv) Discuss the construction of a calomel electrode. Explain the reaction taking place in the electrode.	5
(b)	Answer either [(i), (ii) and (iii)] or [(iv), (v) and (vi)] :	
	(i) Define the terms collision cross- section and mean free path.	3
8A/ 738	(Turn Over	-)

	What are liquid crystals? Mention the uses of liquid crystals.	4
•	A solution, composed of 0.05M of an organic acid and 0.5M of its sodium salt, gives a pH of 5.5 at 298 K. Calculate the dissociation constant of the acid.	3
(iv)	Explain the terms activity and activity coefficient.	2
(v)	Discuss briefly about the structure of liquid crystals.	4
(vi)	What is ionic strength of an electrolytic solution? Calculate the ionic strength of 0.01 mol kg^{-1} H_2SO_4 solution.	3=4
Ans	wer either [(i) and (ii)] or [(iii) and (iv)]:	
(i)	What is buffer capacity of a buffer solution? Explain the term buffer action with the help of a suitable example.	\=5
(ii)	Define electrode potential. Calculate the single electrode potential at 298 K of a half-cell for zinc electrode dipped in 0.01M ZnSO ₄ solution. Given	

 $E_{\text{Zn}^{2+}|\text{Zn}}^{\circ} = -0.763 \text{ volt}$

(c)

1+4=5

- (iii) What are fuel cells? Write the electrode reactions of hydrogen-oxygen fuel cell. Calculate the standard e.m.f. of hydrogen-oxygen fuel cell. Mention one use of fuel cell.

 1+2+2+1=6
- (iv) Explain briefly how equilibrium constant can be calculated from the measurement of standard electrode potential.